MicroGC SOLIA 490

Manuel d'utilisation

Cher utilisateur,

Merci d'avoir choisi ce produit SRA Instruments.

Ce manuel présente les différentes informations nécessaires pour une bonne utilisation de votre appareil. Si toutefois, vous avez besoin de renseignements complémentaires ou si vous rencontrez des problèmes, vous pouvez contacter notre <u>Service Après-Vente</u> :

> Hotline: +33 (0)4 78 44 22 09 E-mail : service@sra-instruments.com

SRA Instruments 210 rue des Sources 69280 Marcy l'Etoile FRANCE

Tel: +33 (0)4 78 44 29 47 info@sra-instruments.com www.srainstruments.com

Table des matières

1. PREAMBULE	
2. INSTRUCTIONS DE SECURITE	7
2.1 Pour votre protection	7
2.2 Informations relatives à la sécurité et à la réglementation	8
2.3 Précautions générales relatives à la sécurité	9
2.4 Pour commencer	10
3. TRANSPORT, NETTOYAGE ET ELIMINATION DE L'INSTRUMENT	10
3.1 Instructions relatives au transport	10
3.2 Nettoyage	11
3.3 Elimination de l'instrument	11
4. APERÇU DE L'INSTRUMENT	11
4.1 Présentation	11
4.2 Principe de fonctionnement	12
4.3 Vue de face	13
4.4 Vue arrière	14
4.5 Vue interne	
4.6 Alimentation électrique	16
4.7 Pression ambiante	16
4.8 Température ambiante	16
4.9 Altitude de fonctionnement maximale	16
4.10 Cycle du MicroGC avec pression constante	16
5. CONSEILS PREALABLES A L'INSTALLATION DE L'INSTRUMENT	17
5.1 Exigences de pré-installation	17
5.2 Vérifier les emballages d'expédition	17
5.3 Déballage du MicroGC	17
5.4 Prévoir les outils et accessoires nécessaires à l'installation	17
5.4.1 Outils	17
5.4.2 Accessoires	17
5.5 Recommandations avant installation	18
5.5.1 Ventilation	18
5.5.2 Tubes	18
5.5.3 Optimisation de la pureté du gaz	18
5.5.4 Gaz vecteurs	18
5.5.5 Events	19
5.6 Les 4 règles d'or	19

	5.7 Raccords Swagelok	20
6.	MANIPULATION DES ECHANTILLONS DE GAZ	22
	6.1 Echantillonnage	22
	6.1.1 Introduction	22
	6.1.2 Modes d'échantillonnage	22
	6.2 Lignes d'échantillon chauffé	23
	6.3 Comment connecter votre échantillon au MicroGC	23
7.	INSTALLATION	24
	7.1 Installation du MicroGC	24
	7.1.1 Etape 1 : Connecter le gaz vecteur	24
	7.1.2 Etape 2 : Installer une alimentation secteur	24
	7.1.3 Etape 3 : Connecter à l'ordinateur ou au réseau local	24
	7.1.4 Etape 4 : Installer le Système de données chromatographiques	25
	7.1.5 Etape 5 : Attribuer une adresse IP (facultatif)	25
	7.1.6 Etape 6 : Finir la configuration du MicroGC dans le logiciel de chromatographie	26
	7.2 Restaurer l'adresse IP d'usine par défaut	26
8.	UTILISATION	28
	8.1 Créer la méthode d'essai	28
	8.2 Effectuer une série d'analyses	28
	8.3 Arrêter l'appareil	28
	8.4 Procédure de récupération de stockage pendant une longue durée	29
	8.5 Conditionnement de colonne	29
9.	VOIES MICROGC	30
	9.1 Contrôle électronique de la pression (EPC)	30
	9.2 Circuit d'échantillonnage inerte	30
	9.3 Injecteur	30
	9.4 Colonne	30
	9.5 Option de rétrobalayage	31
	9.5.1 Mise au point du moment de rétrobalayage (sauf pour une voie HayeSep A)	33
	9.5.2 Pour désactiver le rétrobalayage	33
	9.6 Détecteur	33
1(0. COMMUNICATION	35
	10.1 Accès aux ports de connexion	35
	10.2 Logiciel de chromatographie	35
	10.3 FAQ et Glossaire	35
	10.3.1 Foire aux questions	35
	10.3.2 Glossaire des termes relatifs au réseau	36

10.4 Brochage des connecteurs sur le panneau arrière	37
10.4.1 Port série	37
10.4.2 E/S générale - DB 25	38
10.4.3 Commande à distance - DB9 M	38
10.4.4 Commande à distance externe - DB9 F	39
11. ERREURS	39
11.1 Gestion des erreurs	39
11.2 Liste d'erreurs	40
12. DONNEES TECHNIQUES	45
12.1 Alimentation électrique	45
12.2 Dimensions et poids	45
12.3 Environnement de travail	45
12.4 Modules chromatographiques	45
12.4.1 Gaz vecteurs	45
12.4.2 Echantillon et injection	45
12.4.3 Injecteur	46
12.4.4 Colonne	46
12.4.5 Détecteur	46
12.4.6 Gamme de fonctionnement du TCD	46
12.4.7 Limites de détection du TCD	46
12.4.8 Répétabilité	46
12.5 Logiciel de pilotage	46
13. DECLARATION UE DE CONFORMITE	47
14. ANNEXE I : PILOTER UN SOLIA DEPUIS SOPRANE II	48
14.1 Installation	48
14.2 Configuration des instruments	48
14.2.1 Création de l'instrument SOLIA dans Soprane II	48
14.2.2 Création de l'instrument MSD dans Agilent GCMS Configuration	48
14.3 Configuration du couplage	49
14.4 Contrôle du SOLIA	50
14.4.1 Création d'une méthode d'analyse	52
14.4.2 Création d'une méthode d'analyse Soprane II	52
14.4.3 Création d'une méthode d'analyse MassHunter	52
14.5 Traitement des résultats	55
14.5.1 Création d'une méthode de traitement Soprane II	55
14.5.2 Création d'une méthode de traitement MSD Chemstation Data Analysis	55
15. ANNEXE II : COLONNES	59
15.1 Colonnes Molsieve 5Å	59

15.2 Colonnes CP-Sil 5 CB	60
15.3 Colonnes CP Sil 13 et 19 CB	61
15.4 Colonne PoraPlot 10 m	62
15.5 Colonne Hayesep A 40 cm chauffée	63
15.6 Colonnes CO _x et Al ₂ O ₃ /KCl	64
15.7 Colonnes MES (NGA) et CP-WAX 52 CB	65
16. ANNEXE III : QUESTIONS FREQUEMMENT POSEES (FAQ)	66
16.1 Mon détecteur indique un défaut au niveau du statut, que dois-je faire ?	66
16.2 Mon capteur de pression indique un défaut au niveau du statut, que dois-je faire ?	66
16.3 Je change de gaz vecteur, que dois-je faire ?	66

1. Préambule

Pour des raisons de clarté, ce manuel ne contient pas toutes les informations détaillées concernant tous les types de couplage. De plus, il ne peut pas décrire chaque cas possible concernant l'installation, l'utilisation et la maintenance.

Si vous avez besoin d'informations complémentaires concernant cet appareil ou si vous rencontrez certains problèmes qui ne sont pas suffisamment approfondis dans ce manuel, vous pouvez demander de l'aide auprès de SRA Instruments.

Le contenu de ce manuel ne fait partie d'aucun accord, engagement ou statut légal précédent ou existant et ne change pas ces derniers. Tous les engagements de SRA Instruments sont contenus dans les contrats de vente respectifs qui contiennent aussi les seules et entières conditions de garantie applicables. Ces conditions de garantie mentionnées dans le contrat ne sont ni étendues ni limitées par le contenu de ce manuel.

2. Instructions de sécurité

Informations importantes

Cet instrument a été conçu pour des analyses chromatographiques d'échantillons préparés de manière appropriée. Il doit fonctionner avec les gaz et les solvants adéquats et dans les plages de pression, de flux et de températures maximales spécifiées, comme décrit dans ce manuel. Si l'équipement est utilisé d'une manière non spécifiée par SRA Instruments, la protection fournie par l'équipement peut en être diminuée.

D'autre part, il est de votre responsabilité d'informer le SAV de SRA Instruments si le SOLIA a été utilisé pour l'analyse d'échantillons dangereux, avant toute maintenance de l'instrument ou lorsqu'un instrument est renvoyé pour réparation.

2.1 Pour votre protection

Avertissements :

Avertissement : Danger électrique

Ne remplacez pas les composants alors que le câble d'alimentation est branché. Pour éviter toute blessure, coupez toujours l'alimentation électrique avant de les toucher. Installez le SOLIA de manière à ce que l'accès au câble d'alimentation soit facile. Assurez-vous que vous branchez le câble sur une prise raccordée à la terre, sinon il y a un risque létal.

Avertissement : Surfaces chaudes

Plusieurs pièces du SOLIA fonctionnent à des températures suffisamment hautes pour causer de graves brûlures.

Ces pièces incluent, entre autres :

- L'entrée échantillon
- Le filtre à membrane chauffé
- Le module d'analyse
- Les raccords entre le module analytique et ses entrées et sorties

Vous devez faire extrêmement attention de manière à éviter de toucher ces surfaces chauffées. La température des colonnes peut atteindre 180 °C. N'utilisez pas l'appareil si le module du MicroGC est désassemblé.

Avertissement : La décharge électrostatique est une menace pour l'électronique

La décharge électrostatique peut endommager les cartes électroniques du SOLIA. Si vous devez tenir une carte électronique, portez un bracelet anti électricité statique et tenez-la par les bords.

Avertissement : Utilisation de gaz

N'utilisez pas de gaz qui peuvent former un mélange explosif. Evitez d'utiliser l'hydrogène comme gaz vecteur ou gaz de purge pour vos analyses.

Avertissement concernant l'utilisation d'hydrogène

L'utilisation de l'hydrogène (H₂) comme gaz vecteur peut engendrer des risques de feu ou d'explosion. Assurez-vous que l'alimentation est coupée jusqu'à ce que toutes les connexions soient effectuées.

L'hydrogène est hautement inflammable. Toute fuite d'hydrogène confinée dans un espace fermé peut entraîner des risques d'incendie ou d'explosion.

A chaque utilisation d'hydrogène, vérifiez l'étanchéité des raccords, des canalisations et des vannes avant de vous servir de l'instrument. Avant toute intervention sur l'instrument, coupez toujours l'alimentation en hydrogène à la source.

- L'hydrogène est combustible sur une large plage de concentrations.
- A la pression atmosphérique, il est combustible pour une concentration volumique comprise entre 4 et 74,2 %.
- De tous les gaz, l'hydrogène est celui qui présente la plus grande vitesse de combustion.
- L'hydrogène possède une très faible énergie d'inflammation.
- En cas de détente brutale dans l'atmosphère, l'hydrogène peut s'enflammer spontanément.
- La flamme de l'hydrogène est peu lumineuse et peut passer inaperçue sous un bon éclairage ambiant.

Avertissements relatifs à aux produits chimiques

Lors de la manipulation ou de l'utilisation de produits chimiques à préparer ou à utiliser dans le MicroGC, il est impératif de respecter toutes les règles locales et nationales de sécurité au laboratoire. Conformez-vous toujours aux procédures d'exploitation standard et aux règles découlant de l'analyse de sécurité interne du laboratoire, concernant, entre autres, l'utilisation appropriée de l'équipement de protection individuel et des flacons de stockage, ainsi que la bonne manipulation des produits chimiques. L'inobservation des règles de sécurité au laboratoire peut entraîner des blessures corporelles, potentiellement mortelles.

2.2 Informations relatives à la sécurité et à la réglementation

Cet instrument et ses documents d'accompagnement sont conformes aux spécifications CE et aux exigences de sécurité relatives à l'équipement électrique pour le mesurage, le contrôle et l'utilisation en laboratoire.

Cet appareil a été soumis à essai et répond aux limites exigées par la réglementation. Ces limites sont conçues pour fournir une protection raisonnable contre des interférences préjudiciables lorsque l'équipement est en fonctionnement dans un environnement commercial. L'équipement génère, utilise et peut émettre une énergie de fréquence radio. S'il n'est pas installé et utilisé conformément au manuel d'utilisation, il peut générer des interférences préjudiciables aux communications radio.

NOTICE : Cet instrument a été soumis à essai conformément aux exigences applicables de la Directive CEM nécessaire pour porter la marque CE. Ainsi, l'équipement peut être exposé à des niveaux de radiation/d'interférence ou des fréquences hors des limites testées.

Ce symbole confirme que le SOLIA est conforme à la législation pour tout ce qui concerne la sécurité électrique.

2.3 Précautions générales relatives à la sécurité

Suivez les pratiques de sécurité suivantes pour garantir un fonctionnement sans risque de l'équipement :

- Effectuez des vérifications périodiques des fuites sur toutes les lignes d'alimentation et de la tuyauterie pneumatique.
- Les lignes de gaz ne doivent pas être coudées ni percées.
 Placez les lignes hors du passage et à distance de chaleurs ou fraîcheurs extrêmes.
- Évitez toute exposition à des tensions potentiellement dangereuses. Débranchez l'instrument de toutes les sources d'alimentation avant le retrait des panneaux de protection.
- Lorsque l'utilisation de prise et de cordon d'alimentation, qui ne sont pas d'origine, est nécessaire, assurez-vous que le cordon de remplacement correspond au code couleur et à la polarité décrits dans le manuel et à tous les codes de sécurité locaux de fabrication.
- Remplacez les cordons d'alimentation défectueux ou abimés immédiatement par un cordon de même type et de même calibre.
- Placez l'instrument à un endroit suffisamment ventilé afin d'éliminer les gaz et vapeurs. Assurezvous qu'il y a assez d'espace autour de l'instrument afin qu'il puisse refroidir suffisamment.
- Avant de brancher l'instrument ou de l'allumer, assurez-vous que la tension et les fusibles sont réglés de manière appropriée selon votre source électrique locale.
- N'allumez pas l'instrument s'il y a un risque de dommage électrique. Débranchez le cordon électrique et contactez SRA Instruments.
- Le cordon d'alimentation fourni doit être inséré dans une prise électrique avec une prise de terre de protection. Lorsque vous utilisez une rallonge, assurez-vous que le cordon est mis à la terre de manière convenable.
- Ne modifiez pas les mises à la terre externes ou internes car vous pourriez vous mettre en danger ou endommager l'instrument.
- L'instrument est correctement mis à la terre lorsqu'il est expédié. Aucune modification des connexions électriques ou du châssis de l'instrument ne doit être effectuée afin d'en garantir le bon fonctionnement.
- Lorsque vous travaillez avec cet instrument, suivez les réglementations des Bonnes pratiques de Laboratoires (BPL). Portez des lunettes de sécurité et une tenue appropriée.
- Ne placez pas de contenants avec des liquides inflammables sur cet instrument. Renverser du liquide sur des pièces chaudes peut causer un incendie.
- Cet instrument peut utiliser des gaz inflammables ou explosifs, tel que l'hydrogène sous pression. Avant d'utiliser l'instrument, assurez-vous de bien connaître et de suivre avec précision les procédés de fonctionnement élaborés pour ces gaz.
- N'essayez jamais de réparer ou de remplacer un composant non décrit dans ce manuel sans l'assistance de SRA Instruments. Des réparations ou des modifications non autorisées entraîneront l'annulation de la garantie.

- Déconnectez toujours le cordon d'alimentation CA avant tout essai de réparation.
- Utilisez les outils adéquats lorsque vous travaillez sur l'instrument afin d'éviter de vous mettre en danger ou d'endommager l'instrument.
- N'essayez pas de remplacer la batterie ou un fusible de l'instrument par des pièces qui ne seraient pas spécifiées dans le manuel.
- L'instrument pourrait être endommagé s'il était stocké dans des conditions défavorables durant de longues périodes. (Par exemple, l'instrument peut être endommagé s'il est stocké dans un endroit chaud, en contact avec de l'eau ou d'autres conditions excédant les conditions de fonctionnement admissibles).
- Ne fermez pas le flux dans la colonne lorsque la température du four est élevée car cela pourrait endommager la colonne.
- Cet instrument a été conçu et testé selon des normes de sécurité reconnues ; il est conçu pour un usage en intérieur.
- Si l'instrument est utilisé d'une manière non spécifiée par le fabricant, la protection fournie par l'instrument peut en être diminuée.
- Un échange de pièces ou une modification non autorisée sur l'instrument peuvent compromettre la sécurité.
- Des modifications non expressément approuvées par la partie responsable pourraient rendre l'utilisation de l'instrument non conforme à la législation.

2.4 Pour commencer

- Vérifiez que la tension de fonctionnement de l'appareil est compatible avec celle de votre réseau électrique avant de le mettre en route. L'appareil peut être endommagé dans le cas contraire.
- Utilisez uniquement des gaz et solvants spécifiés dans les procédures d'utilisation.
- N'ouvrez pas l'appareil sans l'autorisation de SRA Instruments.
- Eliminez de l'environnement de l'appareil : les vibrations, tout effet magnétique et les gaz explosifs.
- Le SOLIA doit être utilisé seulement en intérieur ; il est conçu pour une utilisation à température ambiante et dans des conditions où aucune condensation ne peut apparaître. Installez le SOLIA sur une surface rigide et stable.
- Faites entretenir votre appareil par SRA Instruments.

3. Transport, nettoyage et élimination de l'instrument

3.1 Instructions relatives au transport

Si votre SOLIA doit être transporté pour une quelconque raison, il est très important de suivre les instructions de préparation d'expédition supplémentaires :

- Placez tous les capuchons d'évents à l'arrière de l'instrument.
- Fournissez toujours l'alimentation électrique.
- Ajoutez, si utilisés et si possible, le ou les filtre(s) d'entrée.

3.2 Nettoyage

Pour nettoyer la surface du SOLIA :

- 1. Éteignez l'appareil.
- 2. Retirez le cordon d'alimentation.
- 3. Positionnez les bouchons de protection sur l'entrée d'échantillon et les autres connexions gaz.
- 4. Utilisez une brosse souple (ni dure, ni abrasive) afin de brosser avec soin toute la poussière et la saleté.
- 5. Utilisez un chiffon doux et propre humidifié avec un détergent doux pour nettoyer l'extérieur de l'instrument.
 - Ne nettoyez jamais l'intérieur de l'instrument.
 - N'utilisez jamais d'alcool ou de diluants pour nettoyer l'instrument ; ces produits chimiques peuvent endommager le boîtier.
 - Assurez-vous de ne pas mouiller les composants électroniques.
 - N'utilisez pas d'air comprimé pour nettoyer l'instrument.

3.3 Elimination de l'instrument

Lorsque le SOLIA ou ses pièces ont atteint leur fin de vie utile, éliminez-les conformément aux réglementations environnementales applicables dans votre pays.

Ne jetez pas cet appareil. Adressez-vous à un organisme de recyclage compétent.

4. Aperçu de l'instrument

4.1 Présentation

Le SOLIA est un instrument modulaire dans lequel sont associés au maximum 3 voies analytiques de MicroGC 490. Chaque module peut analyser plusieurs composés qui sont détectés par un détecteur universel non destructif.

Cet analyseur est piloté par le logiciel Soprane II : voir Annexe I.

Le couplage avec un spectromètre de masse est possible grâce à une interface chauffée dédiée qui permet l'association des 2 détecteurs en série, sans perte de performance.

Interface chauffée MSD

MicroGC SOLIA 490

4.2 Principe de fonctionnement

Le SOLIA peut être équipé de 1 à 3 voies de colonne indépendantes. Chaque voie de colonne est un GC miniaturisé et complet, comportant :

- Un injecteur micro-usiné
- Une colonne analytique de petit diamètre
 Module
- Un micro-catharomètre (μ TCD)
- Un contrôle de gaz électronique

Les voies analytiques du SOLIA peuvent être équipées de manière facultative d'un rétrobalayage (voir chapitre 9.5). Il a l'avantage de permettre la protection de la phase de colonne stationnaire contre l'humidité et le dioxyde de carbone. De plus, les durées d'analyse sont réduites puisque les composants à élution tardive, donc ne présentant pas d'intérêt, n'entrent pas dans la colonne analytique.

4.3 Vue de face

4.4 Vue arrière

4.5 Vue interne

- 1 : Modules analytiques
- 2 : Clarinette chauffée de distribution de l'échantillon
- 3 : Carte mère MicroGC

4.6 Alimentation électrique

100-240 Vac ; 50-60 Hz ; 6,3 At

N'utilisez que l'alimentation fournie avec votre instrument.

4.7 Pression ambiante

Le MicroGC s'arrête automatiquement si la pression est supérieure à 120 kPa.

4.8 Température ambiante

Le MicroGC s'arrête automatiquement si la température ambiante est supérieure à 65 °C.

4.9 Altitude de fonctionnement maximale

Certifié jusqu'à 2 000 m au-dessus du niveau de la mer.

4.10 Cycle du MicroGC avec pression constante

Le diagramme temporel ci-après présente un aperçu du cycle du MicroGC à pression constante.

Cette description n'est valable que pour une voie. Dans la plupart des cas, un système à deux voies est utilisé. Lorsqu'un système à deux voies est utilisé, la séquence est la même mais les paramètres relatifs à la durée peuvent varier. Si la durée d'échantillonnage dans la voie A et la voie B est différente, la durée la plus longue sera utilisée. La durée d'analyse peut être spécifiée pour chaque voie ; l'acquisition de données s'arrête pour chaque voie dès que la durée d'analyse s'est écoulée. La durée d'analyse totale dépend de la durée d'analyse la plus longue.

TEMPS

5. Conseils préalables à l'installation de l'instrument

5.1 Exigences de pré-installation

Préparez le site d'installation comme décrit dans le manuel relatif aux prérequis d'installation, comprenant les filtres de nettoyage de gaz recommandés.

5.2 Vérifier les emballages d'expédition

Le SOLIA sera livré dans une grande boîte et dans un ou plusieurs cartons plus petits. Inspectez les cartons avec soin pour la présence de dommages ou de signes de manipulation brutale. Déclarez les dommages au transporteur et à SRA Instruments.

5.3 Déballage du MicroGC

Déballez le SOLIA et les accessoires avec soin et transférez-les dans la zone de travail en utilisant les techniques de manipulation appropriées. Inspectez l'instrument et les accessoires avec soin, déclarez au plus tôt d'éventuels dommages au transporteur et à SRA Instruments.

Avertissement : Afin d'empêcher toute sollicitation excessive ou blessure du dos, suivez les précautions de sécurité lorsque vous soulevez des objets lourds.

! Les entrées/sorties gaz de l'instrument ont pu être protégées lors du transport par des capuchons protecteurs. Avant utilisation, retirez ces capuchons.

5.4 Prévoir les outils et accessoires nécessaires à l'installation

5.4.1 Outils

- Tube 1/8" en cuivre ou inox pour raccordement de l'arrivée en gaz vecteur •
- Ecrous 1/8" Swagelok et férules •
- Tube 1/16" inox pour raccordement de l'arrivée en échantillon •
- Ecrous 1/16" Swagelok et férules •
- Deux clefs 7/16" •
- Une clef 5/16" •
- Une clef 9/16" •
- Une clef 1/4" •
- Un tournevis Torx T-20

5.4.2 Accessoires

Détecteur de fuites électronique (optionnel).

<u>Rq</u> : N'utilisez pas de détecteur de fuite liquide : le liquide peut contaminer l'analyseur.

5.5 Recommandations avant installation

5.5.1 Ventilation

Pour optimiser les performances de l'analyseur et accroître sa durée de vie, laissez un espace suffisant de circulation d'air autour de l'appareil pour permettre la dissipation de la chaleur dégagée et éliminer les rejets de gaz vecteur ou d'échantillons potentiellement toxiques, nocifs ou inflammables. Si nécessaire, les rejets toxiques peuvent être piégés.

Evitez de rejeter les effluents gazeux dans un endroit susceptible de subir des variations de pression (vent ou rejets avec température variable). Les variations de pression peuvent affecter la stabilité de la ligne de base et la sensibilité de l'analyseur. Pour les rejets hors pression atmosphérique (par exemple boîtes à gants) n'hésitez pas à contacter SRA Instruments pour définir une solution adaptée.

5.5.2 Tubes

- Le diamètre des tubes dépend de la distance entre la bouteille de gaz et l'analyseur ainsi que du débit total nécessaire. L'utilisation de tube 1/8" est correcte pour une longueur de ligne inférieure à 5 m. Au-delà, ou lorsque plusieurs analyseurs sont reliés à la même arrivée de gaz, l'utilisation de tube 1/4" est préférable.
- N'utilisez pas de tubes en plastique car l'air diffusé dans les tubes pourrait rendre les lignes de base bruyantes et réduire la sensibilité. Les tubes en métal doivent être nettoyés pour une utilisation du MicroGC. Achetez des tubes nettoyés de manière chromatographique ou par les flammes.
- N'utilisez pas de scellements : ils peuvent contenir des matériaux volatils susceptibles de contaminer le circuit de distribution.

5.5.3 Optimisation de la pureté du gaz

Pour disposer de la meilleure qualité de gaz vecteur sur votre analyseur :

- Utilisez un réducteur de pression adapté au besoin.
- Utilisez des tubes et des férules adaptés.
- Purgez correctement les volumes morts avant de raccorder le tube à votre analyseur.
- Confirmez l'absence de fuites grâce à un détecteur électronique.
- Envoyez toujours au MicroGC une méthode de purge (avec TCD OFF) pour purger les volumes morts de l'analyseur et de la colonne avant de mettre le détecteur ON

5.5.4 Gaz vecteurs

La réalisation d'analyses nécessite l'utilisation d'une circulation permanente de gaz vecteur à un débit constant. SRA instruments préconise l'utilisation de gaz de qualité "instrument" ou "chromatographie" spécifiquement destiné à cette utilisation.

Le SOLIA peut être utilisé avec l'hélium, l'azote, l'argon et l'hydrogène.

Spécifications relatives au gaz vecteur :

- Pression : 550 kPa ± 10 % (80 psi ± 10 %)
- Pureté : 99,9996 % minimum ; 99,9999 % pour l'analyse de traces
- Déshydraté et exempt de particules

Les filtres Gas Clean sont recommandés pour retirer toute trace d'humidité et d'oxygène.

Les filtres Gas Clean sont remplis d'azote. Si vous n'utilisez pas d'azote comme gaz vecteur, balayez les filtres et les lignes de gaz après l'installation d'un nouveau filtre.

Le type d'analyse que vous voulez effectuer vous aiguillera sur le type de gaz à utiliser. La différence entre la conductivité thermique relative du gaz vecteur et les espèces à analyser doit être la plus grande possible.

Gaz vecteur	Conductivité thermique relative	Gaz vecteur	Conductivité thermique relative
Hydrogène	47,1	Ethane	5,8
Hélium	37,6	Propane	4,8
Méthane	8,9	Argon	4,6
Oxygène	6,8	Dioxyde de carbone	4,4
Azote	6,6	Butane	4,3
Monoxyde de carbone	6,4		

Voir tableau ci-dessous pour les différentes conductivités thermiques relatives.

5.5.5 Events

Le raccordement des évents est également un paramètre critique à ne pas négliger pour l'analyseur. Laissez les sorties à une pression constante (presque) atmosphérique pour éviter notamment des artefacts sur le signal des TCD. Une mise à la terre des mêmes lignes d'évent lorsque celles-ci sont métalliques est également préconisé.

5.6 Les 4 règles d'or

La technologie MicroGC est facile à utiliser. Aucune connaissance chimique ou analytique n'est nécessaire pour l'utilisation de base et la mise en place. Cependant, comme pour tout instrument d'analyse, il existe des règles importantes à respecter pour protéger votre instrument et ses fonctionnalités.

Ces règles peuvent être présentées comme "les 4 règles d'or" :

- Pression du gaz vecteur
- Qualité du gaz vecteur
- Pression de l'échantillon
- Qualité de l'échantillon •

Ne pas respecter ces règles augmente fortement le risque d'endommager votre instrument. Toutes les procédures standards pour utiliser le MicroGC découlent de ces 4 règles d'or : la qualité du gaz vecteur nécessitera une purge du tube pour assurer ce niveau de qualité.

5.7 Raccords Swagelok

Les branchements pneumatiques utilisent des raccords Swagelok. Si vous n'êtes pas familier de ce type de raccords, prenez connaissance de la procédure décrite ci-après.

Matériel nécessaire :

- Tube cuivre préconditionné 1/8"
- Ecrou 1/8" Swagelok et férules
- Deux clefs 7/16"

6. Manipulation des échantillons de gaz

6.1 Echantillonnage

ATTENTION

L'échantillon doit être propre et sec. Bien que le filtre interne élimine de nombreux contaminants particulaires, les échantillons contenant des aérosols, des quantités excessives de matières particulaires, des concentrations élevées en eau et d'autres contaminants peuvent endommager votre instrument. La présence d'acides (HF, HCl, H₂SO₄ et HNO₃) est interdite.

La pression d'entrée de l'échantillon doit être inférieure à 1 bar rel. et sa température doit être de 100 °C au maximum.

6.1.1 Introduction

Pour une bonne représentativité des analyses de l'échantillon ou de l'étalon, le volume des lignes à balayer jusqu'à l'entrée de l'analyseur doit être le plus faible possible idéalement. Cela signifie que le conditionnement de l'échantillon ainsi que la vanne de sélection si celle-ci est présente doivent être à proximité immédiate de l'analyseur. Le débit d'échantillon circulant dans l'analyseur est également un paramètre critique pour une bonne représentativité des analyses, il doit être au minimum de 20 mL/min. A titre d'exemple et en considérant les deux critères ci-dessus, un échantillon mettra environ 1 minute à parcourir 10 mètres de tube INOX standard 1/8" O.D. au débit de 25 mL/min

6.1.2 Modes d'échantillonnage

Vous devrez disposer d'un matériel de montage approprié pour connecter l'échantillon au MicroGC ou à un accessoire.

L'échantillonnage et le conditionnement sont des points essentiels pour obtenir une bonne analyse et des résultats corrects. Il est important d'étudier cette partie aussi bien que possible.

Echantillon à pression supérieure à une atmosphère

Les échantillons dont la pression est comprise entre 0 et 1 bar rel. peuvent être connectés directement au MicroGC. Au-delà de 1 bar rel., il est nécessaire d'utiliser un système de réduction de pression adapté entre l'échantillon et le MicroGC.

Echantillon disponible à la pression atmosphérique

Dans ce cas les pompes d'aspiration du MicroGC permettront de faire circuler l'échantillon pendant un temps réglable dans les boucles des injecteurs des modules analytiques avant l'injection. Voici quelques exemples d'échantillons à pression atmosphérique :

- air atmosphérique : (ex. contrôle pollution atmosphérique en ligne)
- sac Tedlar : il suffira d'adapter une aiguille de seringue sur l'entrée échantillon de l'analyseur, l'aiguille sortante sera plantée dans le septum du sac qui sera présenté.
- ampoule avec septum : c'est le même principe qu'avec le sac Tedlar mais ici on ne pourra faire que quelques analyses parce que l'ampoule sera rapidement mise en dépression.

6.2 Lignes d'échantillon chauffé

Une ligne d'échantillon chauffé est toujours associée à un injecteur chauffé. Un injecteur chauffé avec une ligne d'échantillon est optionnel sur une voie et est utilisé pour empêcher toute condensation dans les lignes d'échantillon lors de l'analyse d'échantillons condensables. Lorsque cela est possible, éliminez l'humidité des échantillons introduits dans le MicroGC.

L'injecteur et l'échantillon chauffés peuvent être contrôlés entre 30 °C et 110 °C.

6.3 Comment connecter votre échantillon au MicroGC

Avertissement : Les surfaces métalliques du système de chauffage de la ligne d'échantillon peuvent être extrêmement chaudes. Avant de connecter une ligne d'échantillon, attendez que le système de chauffage de la ligne d'échantillon refroidisse jusqu'à atteindre une température ambiante.

Entrée avant

Reliez la ligne d'échantillon à <u>l'entrée d'échantillon</u> chauffée à l'avant du MicroGC en utilisant des raccords Swagelok femelles de 1/8 pouce.

Isolez la ligne d'échantillon reliée au MicroGC afin de ne pas endommager les câbles de communication.

7. Installation

Ce chapitre décrit comment installer l'instrument.

7.1 Installation du MicroGC

Si vous installez le MicroGC SOLIA pour la première fois, suivez les étapes décrites ci-après. Si vous effectuez une réinstallation, voir "Procédure de récupération de stockage pendant une longue durée" dans le chapitre 8.4.

7.1.1 Etape 1 : Connecter le gaz vecteur

Installer les régulateurs de gaz et définir les pressions

Les cylindres de gaz vecteur doivent présenter un régulateur de pression à deux étages afin d'ajuster la pression de gaz vecteur à 550 kPa \pm 10 % (80 psi \pm 10 %). Réglez la pression du régulateur de cylindre afin qu'elle corresponde à la pression d'entrée de gaz.

Connecter le gaz vecteur au MicroGC

Le MicroGC supporte l'utilisation de l'hélium, de l'azote, de l'argon et de l'hydrogène. La pureté du gaz vecteur recommandée est de 99,9996 % minimum. La ligne de gaz vecteur est connectée au MicroGC via les ports **CARRIER GAS IN 1** ou **CARRIER GAS IN 2** sur le panneau arrière (voir chapitre 4.4). Connectez le gaz vecteur au raccord souhaité et ouvrez le débit de gaz.

L'utilisation d'hélium en tant que gaz vecteur avec le MicroGC configuré pour Ar/N₂ diminuera la sensibilité du détecteur (environ 10 fois), inversera les pics, sans autre incidence.

L'utilisation de l'argon comme gaz vecteur avec le MicroGC configuré pour l'hélium détruira les filaments du TCD.

7.1.2 Etape 2 : Installer une alimentation secteur

Branchez le connecteur d'alimentation au MicroGC puis branchez le cordon d'alimentation à une source d'alimentation appropriée. Voir chapitre 4.6.

Votre MicroGC est envoyé de l'usine avec des réglages par défaut. Les informations suivantes présentent les paramètres et les réglages par défaut en usine :

- Lorsque le MicroGC est en marche, le système commence la procédure de cycle de balayage. Le cycle de balayage est un cycle de 2 minutes durant lequel les différentes vannes sont activées ou désactivées afin de balayer l'air emprisonné dans l'embase, les vannes et les tubes.
- Une fois le cycle de balayage terminé, le procédé qui était le dernier actif avant l'arrêt de l'instrument, est activé :
 - Toutes les zones chauffées sont réglées sur 30 °C.
 - Les filaments du détecteur sont réglés sur OFF.

7.1.3 Etape 3 : Connecter à l'ordinateur ou au réseau local

Le SOLIA nécessite une connexion avec un ordinateur sur lequel est installé un logiciel de chromatographie. Cette connexion utilise un protocole TCP/IP avec Ethernet.

7.1.4 Etape 4 : Installer le Système de données chromatographiques

Pour de plus amples instructions relatives à l'installation du système de données chromatographiques, voir le manuel d'installation correspondant.

7.1.5 Etape 5 : Attribuer une adresse IP (facultatif)

A son arrivée depuis SRA Instruments, le MicroGC présente une adresse IP statique par défaut configurée. L'adresse IP active est spécifiée dans le tableau ci-dessous. L'adresse MAC et le numéro de série de la carte mère sont précisés sur un autocollant présent sur celle-ci.

Adresse IP par défaut	10.1.1.101 (ou 192.168.100.100 dans certains cas)
Masque de sous-réseau	255.255.255.0
Nom d'hôte	microgc
Passerelle par défaut	N/A (non utilisé)

- 1. Changez l'adresse IP de votre ordinateur portable ou PC dans la même gamme que l'adresse IP actuelle du MicroGC.
- 2. Démarrez le navigateur web.
- 3. Connectez-vous au site web du MicroGC. Tapez l'adresse IP du MicroGC dans le champ d'adresse du navigateur web.
- 4. Sur la page web, cliquez sur **Réseau**.
- 5. Identifiez-vous en tant qu'administrateur. Utilisez l'identifiant et le mot de passe par défaut d'usine :
 - Identifiant : admin
 - Mot de passe : agilent

The server 192 username and	 168.1.10 at Web Server Authentication requires a password.
Warning: This sent in an inse connection).	server is requesting that your username and password be cure manner (basic authentication without a secure
and all	

6. Sur le réseau, la section supérieure présente la configuration d'IP actuelle. Tapez l'Adresse IP, Masque sous-réseau, et passerelle que vous voulez attribuer au MicroGC dans les champs correspondants.

490 Micro GC - Windows Internet Explorer 20 2 2 http://192.168.100.100/			・ ト サ × 第 3月一下, othat タ・
😭 Favorites 🏾 🍘 490 Micro GC			🕅 * 🗔 - 🗔 👼 - Page - Safety - Tools - 🕢
Agilent Technologies			490 Micro GC
	Configuration: Netwo	ork - Overview	
Instrument Status Statistics Elimware Control Identify Reset Configuration	The overview below sh Configuration source MAC Address IP Address Subnet mask Default gateway	Manual 00:30:D3:21:49 192.168.100.10 255.255.255.0	nts currently active network configuration and how this configuration was obtained. 1:71 0
Wireless Network	Configuration: Netwo	ork - Manual conf	iguration settings
Names	Below this instrument	s manual TCP/IP c	onfiguration parameters can be altered.
Maintenance Update Diagnostics USB Mass Storage	Note 1: If DHCP mode is active, manual configuration parameters will be saved, but remain inactive until DHCP mode is deactivated. DHCP mode can be activated and deactivated using the DHCP DIP switch on the back of the mainboard. After operating DHCP DIP switch, a restart (warm or cold) is required.		
Support Agilent.com	Note 2: If DHCP mode with this web page an	is not active, new d workstations. If	vly saved configuration parameters will be active immediately, leading to loss of connection this occurs, this web page can be contacted again on the newly saved IP address.
User manual	Note 3: Check if DHCF source is DHCP, DHCP	mode is active of is active. If it is /	inactive by observing the Configuration source in the overview above. If the Configuration Manual, manual configuration is active, hence DHCP is inactive.
	IP Address	192 168 100 100	(Cannot be emtpy)
	Subnet mask	255 255 255 0	(Cannot be emtpy)
	Default gateway		(One at most)
	Save		

- 7. Cliquez sur Enregistrer pour enregistrer la configuration IP.
- 8. Cette adresse IP est maintenant l'adresse IP active. La communication avec le MicroGC sera perdue puisque l'adresse IP aura changé.
- 9. Modifiez l'adresse IP de votre ordinateur portable ou de votre PC pour une adresse dans la même gamme que la nouvelle adresse IP du MicroGC.
- 10. Pour rétablir la communication, tapez la nouvelle adresse IP dans la barre d'adresse du navigateur web.

7.1.6 Etape 6 : Finir la configuration du MicroGC dans le logiciel de chromatographie

Si ce n'est pas encore le cas, terminez la configuration additionnelle du MicroGC dans le logiciel de chromatographie utilisé. Assurez-vous que les types de gaz vecteurs correspondent au gaz fourni au MicroGC.

7.2 Restaurer l'adresse IP d'usine par défaut

En usine, le MicroGC (avec carte mère G3581-65000) est configuré avec une adresse IP statique par défaut (voir tableau ci-dessous pour les paramètres).

Adresse IP par défaut	192.168.100.100
Masque de sous-réseau	255.255.255.0
Nom d'hôte	microgc
Passerelle par défaut	N/A (non utilisé)

Un bouton de réinitialisation sur la carte mère permet de restaurer ces paramètres IP par défaut, si nécessaire. Lorsque les paramètres d'adresse IP ne sont pas connus, cette fonctionnalité peut être utilisée pour reconnecter l'instrument et modifier les paramètres IP personnalisés.

Le bouton de réinitialisation est accessible sur la carte mère (voir images ci-dessus). Pour restaurer l'adresse IP d'usine par défaut, suivez cette procédure :

- 1. Éteignez le MicroGC.
- 2. Maintenez le bouton de réinitialisation enfoncé et allumez le MicroGC.
- 3. Relâchez le bouton de réinitialisation rapidement une fois le MicroGC allumé (environ 3 secondes).

<u>Remarque 1</u>: Lorsque le bouton de réinitialisation est relâché trop rapidement (moins d'une seconde), les paramètres IP ne redeviennent pas les paramètres d'usine.

<u>Remarque 2 :</u> Maintenir le bouton de réinitialisation enfoncé trop longtemps (plus de 10 secondes) redémarrera l'instrument sans avoir restauré les paramètres IP par défaut.

4. L'adresse IP par défaut est maintenant restaurée.

8. Utilisation

8.1 Créer la méthode d'essai

Au premier démarrage, effectuez une vérification afin de s'assurer que le MicroGC fonctionne correctement.

Une méthode d'essai pour chaque type de colonne standard a été fournie dans les sections répertoriées dans le Tableau ci-dessous.

Si vous commandez une colonne Molsieve, assurez-vous qu'elle a été conditionnée avant l'utilisation. Voir Annexe II, chapitre 15.1 pour les paramètres.

Type de colonne	Tableau
Molsieve 5A	Tableau 1 à la page 59
CP-Sil 5 CB	Tableau 2 à la page 60
CP Sil 13 CB ou 19 CB	Tableau 3 à la page 61
PoraPlot U ou Q 10 m	Tableau 4 à la page 62
Hayesep A 40 cm	Tableau 5 à la page 63
COx 1 m et Al ₂ O ₃ /KCl	Tableau 6 à la page 64
MES(NGA) et CP-WAX 52 CB	Tableau 7 à la page 65

Utilisez le logiciel de chromatographie pour définir les paramètres de vérification pour chaque voie MicroGC. Appliquez les paramètres de procédure de vérification au MicroGC et laissez l'instrument se stabiliser aux conditions de fonctionnement initiales. Surveillez l'état de l'instrument en utilisant l'affichage de statut du logiciel (consulter le manuel correspondant pour plus de détails).

Chaque méthode d'essai a été établie pour déterminer si la voie de l'instrument fonctionne correctement et comprend un exemple de chromatogramme d'essai.

8.2 Effectuer une série d'analyses

- 1. Créez une courte séquence d'au moins trois analyses en utilisant un échantillon d'essai et une méthode d'analyse.
- 2. Lancez la séquence.
- 3. Après une première analyse, les résultats pour chaque voie doivent être similaires aux chromatogrammes d'exemples.

8.3 Arrêter l'appareil

- Le détecteur peut être endommagé par une mauvaise interruption. Si l'arrêt de l'instrument dure plus que quelques jours, suivre la procédure ci-dessous.
 - 1. Créez une méthode pour toutes les voies avec ces paramètres :
 - Filaments éteints.
 - Température de colonne réglée sur 30 °C.
 - Température de l'injecteur réglée sur 30 °C.
 - Pression réglée sur 50 kPa.
 - 2. Appliquez la méthode au MicroGC.
 - 3. Attendez jusqu'à ce que la température des colonnes et des injecteurs soit < 50 °C (afin de protéger la colonne), puis éteignez le MicroGC.

4. Retirez les tubes du gaz vecteur et branchez tous les évents et les connexions du gaz vecteur avec des écrous en laiton de 1/8 pouce ou des capuchons en plastique.

Avant d'utiliser à nouveau l'instrument, effectuez la procédure "Procédure de récupération de stockage pendant une longue durée" décrite dans le chapitre suivant.

8.4 Procédure de récupération de stockage pendant une longue durée

Suivez cette procédure de récupération si votre MicroGC a été stocké pendant une longue durée.

- 1. Retirez les écrous en laiton de 1/8 pouce et les capuchons en plastique de tous les évents et les connexions de gaz vecteur.
- 2. Connectez les tubes du gaz vecteur et appliquez une pression au MicroGC.
- 3. Attendez au moins 10 minutes avant d'allumer le MicroGC.
- 4. Vérifiez immédiatement si les filaments du détecteur sont éteints. Éteignez si nécessaire.
- 5. Réglez la (les) température(s) de la (des) colonne(s) sur la température maximale autorisée (160 °C ou 180 °C selon la limite de la colonne).
- 6. Conditionnez la colonne MicroGC, de préférence pendant toute la nuit. On s'assure ainsi que toute l'eau a été éliminée du module de colonne et qu'aucun dommage ne surviendra sur les filaments du TCD.

8.5 Conditionnement de colonne

Suivez cette procédure afin de vous assurer que l'eau pouvant être présente dans la colonne analytique est retirée avant que le TCD ne soit démarré.

Suivez également cette procédure si le module MicroGC a été stocké pendant une longue période.

Les filaments du détecteur peuvent être endommagés par un conditionnement inapproprié. Suivez cette procédure afin d'éviter tout dommage aux filaments du détecteur.

Procédure de conditionnement de colonne

- Éteignez les filaments TCD durant le procédé.
- 2. Établissez la température de colonne du module à la température maximale (160 °C ou 180 °C selon la limite de colonne). Laissez les filaments éteints.
- 3. Téléchargez ce procédé sur le MicroGC.
- 4. Effectuez le procédé téléchargé pour conditionner la colonne, de préférence durant la nuit.

Vous vous assurez ainsi que toute l'eau a été retirée de la colonne et que les filaments TCD ne subiront aucun dommage.

Co-élution de l'azote et de l'oxygène dans les colonnes Molsieve

Dans une colonne activée de manière conforme, l'azote et l'oxygène seront bien séparés. Toutefois, vous remarquerez que ces deux pics commenceront à fusionner. Ceci est dû à l'eau et au dioxyde, présents dans l'échantillon ou le gaz vecteur, s'adsorbant à la phase stationnaire.

Pour retrouver l'efficacité de la colonne, conditionnez la colonne, comme décrit ci-dessus, pendant une heure environ. Après le reconditionnement, vous pouvez soumettre à essai la performance de la colonne en injectant de l'air. Si vous avez une bonne séparation entre l'azote et l'oxygène de nouveau, le pouvoir de séparation de la colonne a été restauré. Si la fréquence d'utilisation du MicroGC est élevée, vous devez laisser de manière constante la température du four à 180 °C la nuit. Plus la période de reconditionnement est longue, plus la performance de la colonne sera excellente.

9. Voies MicroGC

L'instrument comprend jusqu'à 3 voies. Une voie MicroGC comprend un régulateur de gaz, un injecteur, une colonne et un catharomètre. Voir schéma ci-dessous.

Ce chapitre fournit une brève analyse des composants majeurs du MicroGC et de l'option de rétrobalayage.

Schéma du flux de gaz

9.1 Contrôle électronique de la pression (EPC)

L'instrument contrôle précisément la température, la pression et les débits par voie électronique pendant la l'analyse et entre les analyses, sans intervention de l'opérateur.

9.2 Circuit d'échantillonnage inerte

Le SOLIA est équipé d'un circuit d'échantillonnage traité Ultimetal[™]. Ce procédé de désactivation garantit l'intégrité de l'échantillon et aide à atteindre les meilleures limites de détection possibles. La désactivation s'applique au tubing allant de l'entrée d'échantillon jusqu'à l'injecteur.

9.3 Injecteur

L'échantillon gazeux entre dans le collecteur chauffé du MicroGC. Le collecteur règle la température de l'échantillon et dirige celui-ci vers l'injecteur.

L'injecteur conduit ensuite l'échantillon sur la colonne, tandis qu'une pompe à vide aide à conduire l'échantillon dans le système.

9.4 Colonne

Plusieurs configurations de colonne sont possibles sur le MicroGC. Les colonnes nécessaires pour vos analyses spécifiques ont été installées en usine. D'autres configurations sont bien sûr possibles. Toutefois, la modification des voies GC est délicate et ne peut être effectuée que par un technicien SRA Instruments. Le tableau ci-dessous présente différentes colonnes standard comme fournies dans les MicroGC et les applications sélectionnées. Les autres colonnes sont disponibles en contactant Agilent Technologies.

Type de colonne/phase	Composants cibles		
Molsieve 5Å	Gaz permanents (séparation (N2/O2), méthane, CO, NO, etc. (20 m sont requis pour		
	une séparation de la ligne de base O2-Ar). Gaz naturel et analyse de biogaz.		
	Configuration de la Stabilité du temps de rétention (RTS) facultative.		
Hayesep A	Analyses d'hydrocarbures C1–C3, N2, CO2, air, solvants volatils		
CP-Sil 5 CB	Analyses d'hydrocarbures C3–C10, aromatiques, solvants organiques, gaz naturel.		
CP-Sil 19 CB	Hydrocarbures C4–C10, solvants à haut point d'ébullition, BTX.		
CP-WAX 52 CB	Solvants volatils polaires, BTX		
PLOT Al2O3/KCl	Hydrocarbures légers C1–C5 saturés et insaturés. Analyse de gaz de raffinerie.		
PoraPLOT U	Hydrocarbures C1–C6, halocarbures/fréons, anesthésiques, H2S, CO2, SO2, solvants		
	volatils. Séparation de l'éthane, de l'éthylène et de l'acétylène.		
PoraPLOT Q	Hydrocarbures C1–C6, halocarbures/fréons, anesthésiques, H2S, CO2, SO2, solvants		
	volatils. Séparation du propylène et du propane, co-élution d'éthylène et d'acétylène.		
CP-COx	CO, CO2, H2, Air (co-élution de N2 et O2), CH4.		
CP-Sil 19CB pour THT	THT et C3–C6+ dans la matrice du gaz naturel.		
CP-Sil 13CB pour TBM	TBM et C3–C6+ dans la matrice du gaz naturel		
MES NGA	Colonne unique testée spécialement pour le MES dans le gaz naturel (1 ppm).		

I Toutes les colonnes, à l'exception des colonnes HayeSep A (160 °C) et MES (110 °C) peuvent être utilisées jusqu'à 180 °C, la température maximale du four de colonne. Si vous dépassez cette température, la colonne perdra de son efficacité de manière instantanée et le module de colonne devra être remplacé. Toutes les voies comportent une protection empêchant un point de consigne au-dessus de la température maximale.

Voir Chapitre 15, Annexe II pour plus de détails sur les colonnes.

9.5 Option de rétrobalayage

Les modules analytiques du SOLIA peuvent être équipées de manière facultative d'un rétrobalayage. Celuici a l'avantage de permettre la protection de la phase stationnaire de la colonne contre l'humidité et le dioxyde de carbone. De plus, les durées d'analyse sont réduites puisque les composés à élution tardive, donc ne présentant pas d'intérêt, n'entrent pas dans la colonne analytique.

Un système de rétrobalayage comprend toujours une pré-colonne et une colonne analytique. Les deux colonnes sont couplées à un *point de pression*, rendant possible l'inversion de la direction du flux gazeux dans la pré-colonne à un moment prédéfini, appelé le *moment de rétrobalayage*. Voir Figure 2.

L'injecteur, les deux colonnes et le détecteur sont en série.

L'échantillon est injecté dans la pré-colonne lorsque la pré-séparation a lieu. L'injection se déroule en mode normal. Voir Figure 1.

Figure 1

Lorsque tous les composants à quantifier sont transférés dans la colonne analytique, la vanne de rétrobalayage commute (au moment du rétrobalayage). Dans la pré-colonne, le flux est inversé et tous les composants laissés dans la pré-colonne sont rétrobalayés dans l'évent. Dans la colonne analytique, la séparation continue car le flux n'est pas inversé. Voir Figure 2.

Figure 2

Le mode de veille est la configuration du rétrobalayage (si l'instrument est équipé d'une vanne de rétrobalayage facultative).

Le rétrobalayage permet d'économiser le temps nécessaire pour éluer les composants à haut point d'ébullition ne présentant pas d'intérêt et garantit que la pré-colonne fonctionnera dans de bonnes conditions.

9.5.1 Mise au point du moment de rétrobalayage (sauf pour une voie HayeSep A)

Mettre au point le moment de rétrobalayage est nécessaire pour chaque nouvelle voie. Ce chapitre décrit comment mettre au point le moment de rétrobalayage sur toutes les voies sauf sur HayeSep A.

Procédure de mise au point du moment de rétrobalayage

- 1. Réglez le moment de rétrobalayage à 0 s et analysez l'échantillon de vérification ou un échantillon propre à une voie spécifique. Cette opération a pour but d'identifier les composants du mélange d'étalonnage.
- 2. Modifiez le moment de rétrobalayage à 10 s et mettez en route. On observe que :
 - Lorsque le rétrobalayage est trop précoce, les pics visés sont partiellement ou totalement rétrobalayés.
 - S'il est trop tardif, les composants non désirés ne sont pas rétrobalayés et présentés dans le chromatogramme.
- 3. Mettez en fonctionnement avec différents moments de rétrobalayage jusqu'à ce qu'il n'y ait aucune différence importante dans le pic visé. Pour une mise au point précise du moment de rétrobalayage, établissez des étapes plus petites (par exemple 0,10 seconde) jusqu'à ce que vous trouviez le moment de rétrobalayage optimal.

La figure ci-dessous donne un exemple de réglage du temps du rétrobalayage pour la voie CP-Molsieve 5 A.

Effet du rétrobalayage sur le pic d'intérêt

9.5.2 Pour désactiver le rétrobalayage

Pour désactiver le rétrobalayage, définissez le **Moment de rétrobalayage** à 0. Le système est ainsi en mode normal durant tout le fonctionnement.

9.6 Détecteur

Après la séparation sur la colonne, l'échantillon passe à travers un détecteur de conductivité thermique (TCD), qui est un pont de Wheatstone standard. Une voie est réservée au gaz de référence (gaz vecteur pur). La deuxième voie est réservée au flux de la colonne analytique. Ce flux est constitué par un gaz vecteur pur ou contient des molécules de l'échantillon.

 $(\mu TCD).$

Lorsque le flux analytique est un gaz vecteur pur, le pont est équilibré et le signal est nul.

Lorsque le flux analytique contient d'autres molécules, les capacités thermiques des molécules d'échantillons polyatomiques provoquent des fluctuations de la température du filament. Le pont est déséquilibré et le signal est amplifié par l'électronique pour obtenir le chromatogramme.

Chaque module a son propre détecteur avec un volume ultra-miniaturisé

Le TCD du μ GC est un détecteur universel, facile à utiliser. Avec un temps de réponse de 5 ms, le μ TCD effectue une analyse très rapide sur les colonnes capillaires.

Ce μTCD est sensible et linéaire. La réponse dynamique commence à partir de plusieurs ppm jusqu'à 100 % avec une excellente linéarité (± 10% sur 6 décades).

Le µTCD a 2 échelles de gain différentes (standard et haute). Le logiciel compensera automatiquement le niveau du signal. La surface du pic reste la même dans les 2 sensibilités, seul le rapport Signal/Bruit change. Il est pratique de n'utiliser qu'une méthode d'étalonnage pour les deux gains.

ATTENTION : flux de gaz dans le détecteur !

Il est strictement recommandé de purger toutes les conduites de gaz vecteur avant d'alimenter le TCD. Les traces d'air dans les tubulures, le module et les colonnes peuvent endommager gravement les filaments de TCD.

Bien que chaque module analytique soit équipé de systèmes de sécurité pour imposer la décharge du détecteur en l'absence de gaz vecteur, soyez prudent, en particulier lors du changement des bouteilles de gaz vecteur, ou lors du démarrage de l'analyseur après une période d'inutilisation prolongée.

Si la bouteille de gaz vecteur est vide, les systèmes de sécurité imposent la coupure du régulateur de pression et du TCD.

Le problème est que lorsque vous changez de bouteille, l'air entre dans les tubes et traverse le TCD, ce qui engendre un risque d'endommager le détecteur lorsque vous le mettez de nouveau en marche.

Pour éviter ce risque, il est nécessaire de purger correctement le régulateur de pression et le circuit de distribution de la bouteille jusqu'à l'entrée de gaz vecteur du MicroGC. Pour cela, vous devez télécharger une méthode « purge » sur l'instrument, pour purger les pièces internes avec le nouveau gaz vecteur, en maintenant le détecteur éteint.

10. Communication

Ce chapitre décrit les ports d'entrée et de sortie accessibles dans les SOLIA pour l'interface avec des dispositifs externes.

10.1 Accès aux ports de connexion

10.2 Logiciel de chromatographie

Le SOLIA nécessite un logiciel pour le contrôle, l'identification de pic, l'intégration, l'analyse de données, le rapport, etc... Une connexion (Ethernet) LAN est nécessaire pour le contrôle depuis un ordinateur. Le nombre maximal de MicroGC contrôlés est limité par votre licence de logiciel. Pour de plus amples informations sur les procédures d'installation, consultez les manuels dédiés pour chaque logiciel.

10.3 FAQ et Glossaire

10.3.1 Foire aux questions

Q: Est-ce que je peux connecter le MicroGC à mon réseau de site ?

R : Oui, si le réseau fonctionne avec un Ethernet standard et utilise un protocole TCP/IP avec câblage UTP.

Q: J'utilise un serveur DHCP, puis-je l'utiliser pour attribuer une adresse IP au MicroGC ? **R**: Si vous disposez d'un MicroGC avec carte principale G3581-65000 installée, oui.

Q: Comment puis-je attribuer une adresse IP au MicroGC?

R: Voir paragraphe 7.1.5« Attribuer une adresse IP »

Q : Les paramètres du réseau sont-ils sauvegardés si le MicroGC est redémarré, ou bien après une coupure d'alimentation ?

R : Oui, les paramètres du réseau du MicroGC sont stockés dans la mémoire flash et ne seront pas effacés en cas de coupure de courant.

Q : Puis-je contrôler mon MicroGC n'importe où dans le monde via Internet ?

R : Oui, si votre réseau est conçu pour ça et comporte un accès internet ou des systèmes d'accès à distance (les ports 4900, 4901 et 4902 peuvent être ouverts).

10.3.2 Glossaire des termes relatifs au réseau

Câble croisé Câble utilisé pour connecter deux, et **seulement deux**, périphériques Ethernet directement sans avoir à utiliser un concentrateur ou un commutateur.

Domaine Un des nombreux paramètres dans la configuration TCP/IP qui identifie les chemins utilisés pour communiquer avec des périphériques Ethernet. Le Domaine est une adresse IP.

Adresse Ethernet (Adresse MAC) Il s'agit d'un identifiant unique que chaque dispositif de communication Ethernet lui a attribué. Généralement, l'adresse Ethernet ne peut pas être modifiée et est le moyen permanent d'identifier un périphérique matériel particulier. L'adresse Ethernet se compose de 6 paires de chiffres hexadécimaux.

Passerelle Il s'agit de l'un des nombreux paramètres dans la configuration TCP/IP qui identifie les chemins utilisés pour connecter les périphériques Ethernet à un sous-réseau différent. La passerelle est attribuée à une adresse IP.

Nom d'hôte Le nom d'hôte est un chemin alternatif pour identifier un périphérique de manière plus simple pour les personnes. En général, le nom d'hôte et l'adresse IP peuvent être utilisés de manière interchangeable.

Adresse IP II s'agit d'un numéro unique pour un périphérique Ethernet dans l'ensemble des périphériques connectés. Deux PC peuvent avoir des adresses IP identiques aussi longtemps qu'ils ne sont pas interconnectés l'un l'autre via Internet. L'adresse IP se compose d'une série de quatre suites de chiffres (entre 1 et 255) fournissant des informations sur le routage utilisées par le protocole TCP/IP pour établir une connexion fiable. Sans adresse IP, les communications seraient ralenties en essayant d'établir une communication entre des adresses Ethernet et des emplacements inconnus.

Câble de raccordement Câble utilisé pour connecter des périphériques Ethernet à des concentrateurs, des commutateurs ou à un réseau d'entreprise.

Protocole Série de règles régissant comment les ordinateurs envoient et reçoivent des informations.

Connecteur RJ45 Connecteur de type prise de téléphone utilisé pour une connexion de matériel universel paires torsadées (UTP) pour des connexions Ethernet Base-T 10/100. Les connecteurs RJ45 sont utilisés par le MicroGC.

TCP/IP Protocole international standard utilisé par Internet. Nous utilisons ce protocole pour la communication du MicroGC. Vous trouverez de nombreux protocoles, tels que IPX/SPX et NetBEUI installés dans votre ordinateur.

10.4 Brochage des connecteurs sur le panneau arrière

10.4.1 Port série

a) Configuration COM 3 à partir de la carte mère du MicroGC

Numéro broche	RS232	RS422	RS485 2 fils	RS484 4 fils
1	CTS	RX-	non utilisé	RX-
2	RX	RX+	non utilisé	RX+
3	ТХ	TX+	Données+	TX+
4	RTS	TX-	Données-	TX-
5	GND	GND	GND	GND

b) COM 3 - DB9 F sur la panneau arrière du SOLIA 490 : Paramétrage RS-232 en usine

* Contacts de relais maximum 24 Volt 1 Ampère

10.4.3 Commande à distance - DB9 M

10.4.4 Commande à distance externe - DB9 F

11. Erreurs

11.1 Gestion des erreurs

Durant le fonctionnement, une série d'évènements et de messages d'erreurs sont générés, indiquant le début ou la fin de certaines actions et de procédures, ainsi que de petites erreurs ou des erreurs fatales au sein de l'instrument. Cette section décrit comment le MicroGC réagit à ces évènements ou messages.

Les classes d'erreurs suivantes ainsi que les actions résolutoires sont disponibles :

Classe 0 *Événement interne*. Ces évènements indiquent qu'une certaine procédure a commencé ou est terminée. Ils n'influencent en aucune façon le fonctionnement propre de l'instrument.

Classe 1 *Erreur consultative* ; l'instrument continue. Il s'agit des erreurs consultatives les moins critiques ne nécessitant pas d'action immédiate par l'utilisateur. Le fonctionnement en cours peut être affecté de manière minime, il ne nécessite donc pas d'être arrêté. Les messages d'erreur de la classe 1 indiquent certains dysfonctionnements de l'instrument. Certaines erreurs de ce type empêchent l'instrument d'être prêt.

Classe 2 *Erreurs critiques* **pour l'enregistrement ; activation de la LED erreur.** Ces erreurs sont critiques et l'utilisateur doit être averti immédiatement (un popup ou un avertissement peut apparaître dans le système de données et la LED d'erreur s'éclaire). Le fonctionnement en cours s'arrête car cela pourrait endommager gravement l'instrument. Une action corrective par l'utilisateur ou l'instrument peut être requise.

Classe 3 *Erreurs fatales* **pour enregistrement ; arrêt de l'instrument, LED d'erreur et alarme activées.** Il s'agit d'erreurs fatales pour lesquelles l'utilisateur nécessite un avertissement immédiat. La LED d'erreur s'éclaire. L'instrument s'arrête. Une action corrective par l'utilisateur ou le service est requise.

Toutes les erreurs, peu importe la classe, sont disponibles dans le système de données sous le statut de l'instrument (pour dysfonctionnement). Toutes les erreurs de classe 1 ou plus sont également enregistrées dans la mémoire flash de l'instrument.

Des numéros individuels identifient toutes les erreurs ; ces numéros sont établis en utilisant la classe d'erreur et un chiffre. Les évènements ne sont pas numérotés.

11.2 Liste d'erreurs

L'État d'Erreur Général est composé des éléments suivants.

L'erreur doit être traitée en tant que CLNNN pour lesquels :

- C = classe d'erreur (gravité)
- L = emplacement

NNN = numéro d'erreur ou numéro d'évènement.

La classe d'erreur peut être l'une des valeurs suivantes :

- 0 = erreur de diagnostic.
- 1 = erreur consultative.
- 2 = erreur critique.
- 3 = erreur fatale.

Il y a cinq emplacements :

- 0 = carte mère.
- 1 = voie 1.
- 2 = voie 2.
- 3 = voie 3.
- 4 = voie 4.

Le Tableau ci-dessous liste les erreurs possibles.

Numéro d'erreur	Classe d'erreur	Code d'évènement/d'erreur	Description	Action nécessaire
1	0	Init. effectuée (évènement)	Fin de la phase initialisation	
2	0	Pression rétablie	Pression rétablie après Pression trop basse	
3	0	Commencer le cycle de balayage	Constitue une partie du cycle d'initialisation	
4	0	Cycle de balayage effectué	Constitue une partie du cycle d'initialisation	
5	0	Étalonnage TCD	Génération automatique après activation ou chargement de procédé	TCD arrêté et contrôle de température par défaut
6	1	Pression trop basse	Pression descendue en dessous de 35 kPa	Vérification de l'alimentation en gaz
7	1	Défaillance de pression	État de la pression indisponible après 5 minutes	Vérifier l'alimentation en gaz ou remplacer l'embase

Numéro d'erreur	Classe d'erreur	Code d'évènement/d'erreur	Description	Action nécessaire	
8	1	Batterie faible 1	Batterie 1 faible (Micro GC portable uniquement)	Recharger batterie	
9	1	Batterie faible 2	Batterie 2 faible (Micro GC portable Recharg uniquement) batteri		
10	2	Dysfonctionnement du capteur de la ligne d'échantillonnage	nement du capteur Erreur du capteur de température de la ligne Récha 'échantillonnage d'échantillonnage étein		
11	2	Erreur de la température de la ligne d'échantillonnage	le la température de la Température non atteinte dans les 35 minutes Remp 'échantillonnage (erreur du réchauffeur) récha ligne tillor		
12	2	Erreur de la température de l'injecteur	Température non atteinte dans les 35 minutes Remplacer (erreur du réchauffeur) module		
13	2	Erreur de la température de colonne	Température non atteinte dans les 35 minutes (erreur du réchauffeur)	Remplacer le module	
14	1	Limite de température TCD activée	Protection du matériel activée		
15	0	Erreur d'enregistrement EDS	Impossible de mettre à jour l'enregistrement EDS	Appeler le service	
16	1	Alimentation secteur faible	Tension < 10 V	Recharger batterie	
17	2	Dysfonctionnement du capteur de l'injecteur	Erreur du capteur de température de l'injecteur	Remplacer le module	
18	2	Dysfonctionnement du capteur de température de la colonne	Erreur du capteur la température de la colonne	Remplacer le module	
19	2	Erreur du contrôle TCD	Tension TCD non réglée ou réglée de manière incorrecte	Appeler le service	
20	2	Étalonnage TCD échoué	Toute erreur lors de l'étalonnage TCD	Remplacer le module ou la carte de commande du TCD	
21	2	Redémarrage de l'appareil	Demande de redémarrage de l'instrument à partir du WS	ment à	
22	2	Pression trop élevée	Pression > 450 kPa pendant au moins 2 minutes	Remplacer le module d'extraction	
23	3	Erreur d'initialisation	Lors de l'initialisation	Appeler le service	
24	3	Erreur de communication interne	Pendant/après l'initialisation, entre MPU et IOC/IOE	Appeler le service	
25	3	Fiche EDS instrument incorrecte	Fiche relative aux données électroniques (=EDS) de l'instrument incorrecte	Appeler le service	
26	3	Fiche EDS incorrecte	Fiche de données électroniques incorrecte	Appeler le service	

Numéro d'erreur	Classe d'erreur	asse erreur Code d'évènement/d'erreur Description n		Action nécessaire	
27	3	Panne de courant interne	Pendant/après l'initialisation, fournitures Appeler le service		
28	0	Cycle de balayage suspendu	Cycle de balayage arrêté avant achèvement		
29	0	Module GC modifié	Changer une voie (régulateur ou module) et redémarrer l'instrument		
30	0	Gain de TCD étalonné	de TCD étalonné Finir l'étalonnage du gain de TCD		
31	0	Compensation du TCD étalonné	Fin de l'étalonnage de compensation		
32	0	Chaîne vide	Non utilisé		
33	0	Lecture de l'ADC en dehors de la gamme	Contrôle numérique analogique (ADC) en dehors de la gamme		
34	0	Fiche EDS du Module analytique incorrecte	Fiche de données électronique de Module analytique incorrecte		
35	0	Fiche EDS de somme de contrôle de Config incorrecte	Fiche de données électronique de somme de contrôle de Config incorrecte	omme de	
36	0	Fiche EDS de somme de contrôle du registre incorrecte	Fiche de données électronique de somme de contrôle du registre incorrecte		
37	0	Fiche EDS de somme de contrôle protégée incorrecte	Fiche de données électronique de somme de contrôle protégée incorrecte		
38	0	C. C. EDS Somme de contrôle de Config incorrecte	Fiche de données électronique de somme de contrôle de voie incorrecte		
39	0	C. C. EDS Somme de contrôle de registre incorrect	Fiche de données électronique de somme de contrôle de registre de contrôle de voie incorrecte		
40	0	C. C. EDS Somme de contrôle protégée incorrecte	Fiche de données électronique de somme de contrôle protégé de contrôle de voie incorrecte		
41	0	Fiche EDS de somme de contrôle de Config. M. A. incorrecte	Fiche de données électroniques de somme de contrôle de Configuration de module analytique incorrecte	omme de analytique	
42	0	Fiche EDS de somme de contrôle de Registre M. A. incorrecte	Fiche de données électroniques de somme de contrôle de Registre de module analytique incorrecte		
43	0	Fiche EDS de somme de contrôle protégé M. A. incorrecte	Fiche de données électronique de somme de contrôle protégé de module analytique incorrecte	nme de e	
44	0	Fiche EDS de SVER de Config incorrecte	Fiche de données électroniques de Version de Structure de Configuration incorrecte		
45	0	Fiche EDS de SVER Protégée incorrecte	Fiche de données électroniques de version de Structure Protégée incorrecte		
46	0	C. C. EDS SVER Config incorrect	Fiche de données électroniques de Version de Structure de Contrôle de Voie incorrecte		
47	0	C. C. EDS SVER Protégée incorrecte	Fiche de données électroniques de Version de Structure de Contrôle Protégée de Contrôle de voie incorrecte		

Numéro d'erreur	Classe d'erreur	se reur Code d'évènement/d'erreur Description		Action nécessaire	
48	0	Fiche EDS de SVER Config M.A	Fiche de données électroniques de Configuration de Module Analytique incorrecte		
49	0	Fiche EDS de SVER Protégée M.A	Fiche de données électroniques de Version de Structure Protégée de Module Analytique incorrecte		
50	0	Étalonnage du décalage de pression complète	Notification de l'étalonnage du décalage de pression complète		
51	0	Étalonnage de compensation de pression échoué	Compensation d'étalonnage hors de la gamme		
52	0	Impossible d'établir une compensation de pression	La compensation de pression se situe hors de la gamme valable		
53	2	Capteur de température déconnecté	Capteur de température déconnecté de Appeler le Service		
54	1	Indisponible pour commencer le fonctionnement	Incer Délivré par l'Objet de Contrôle de Sécurité dans Méthode de le domaine Matériel. Appel pont au domaine vérification GC (Rapport indisponible pour démarrer le fonctionnement)		
54	1	Sélection de flux échouée	Le sélecteur de flux (VICI) a échoué lors de la permutation	Vanne de vérification	
55	1	Alarme de température ou de pression ambiante	Délivré par l'Objet de Contrôle de Sécurité dans le domaine Matériel lorsque la température ambiante a dépassé une certaine valeur		
56	1	Nettoyage de colonne	Instrument dans l'état de nettoyage de la colonne	NA	
57	1	Équilibrage des zones de températureStabilisation de l'instrument après nettoyageAttend ce qu'		Attendre jusqu'à ce qu'il soit prêt	
76	3	Erreur de communication IOC	eur de communication IOC Le MPU n'est pas en mesure de communiquer Appe avec l'IOC serv		
77	3	Lire l'erreur de la fiche EDS de la carte mère	fiche EDS de Impossible de lire la fiche EDS de la carte mère Appeler le service		
78	3	Lire l'erreur de la fiche EDS du régulateur de voie	Impossible de lire la fiche EDS du régulateur	du régulateur Appeler le service	
79	3	Lire l'erreur de la fiche EDS du module analytique de voie	Impossible de lire la fiche EDS du module analytique	e Appeler le service	
990	3	Erreur de contrôle : Enregistrer le rapport d'application de l'erreur flash	Erreur de logiciel interne, ne peut enregistrer le rapport d'application sur la mémoire flash.	Auto reboot	
991	3	Erreur de contrôle : Enregistrer le rapport ErrorLog relatif à l'erreur flash	Erreur de logiciel interne, ne peut enregistrer le rapport d'ErrorLog sur la mémoire flash.	Auto reboot	
992	3	Erreur de contrôle : Instrument bloqué (erreur à risque)	Erreur de logiciel interne, logiciel suspendu	Auto reboot	
993	3	Erreur de contrôle : Erreur de minuteur OOA	Erreur de logiciel interne, le Minuteur OOA ne peut pas être créé.	Auto reboot	

Numéro d'erreur	Classe d'erreur	Code d'évènement/d'erreur	Description	Action nécessaire
994	3	Erreur de contrôle : Réacteur ACE arrêté	Erreur de logiciel interne, Réacteur ACE arrêté	Auto reboot
995	3	Erreur de contrôle : Pompe d'évent arrêtée pendant 20 s.	Erreur de logiciel interne, Pompe d'évent arrêtée.	Auto reboot
996	3	Erreur de contrôle : Erreur fatale IOC 0	Erreur de logiciel interne, Erreur fatale IOC 0	Auto reboot
997	3	Erreur de contrôle : Erreur fatale IOC 1	Erreur de logiciel interne, Erreur fatale IOC 1	Auto reboot
998	3	Erreur de contrôle : Erreur fatale IOC 2	Erreur de logiciel interne, Erreur fatale IOC 2	Auto reboot
999	3	Erreur de contrôle : Erreur fatale IOC 3	Erreur de logiciel interne, Erreur fatale IOC 3	Auto reboot

12. Données techniques

12.1 Alimentation électrique

220-240 VAC, 50-60 Hz

12.2 Dimensions et poids

SOLIA (MicroGC seul)

Largeur : 191 mm Hauteur : 480 mm Profondeur : 525 mm

SOLIA (MicroGC + Interface de couplage)

Largeur : 383 mm Hauteur : 480 mm Profondeur : 525 mm Poids : ≈ 15 kg

SOLIA couplé à MS

Largeur : 700 mm Hauteur : 480 mm Profondeur : 542 mm Poids : ≈ 85 kg

12.3 Environnement de travail

- Humidité relative : 0 à 95 %
- Sans condensation
- Température ambiante :
 - Température : 0 °C à 40 °C
 - Le MicroGC s'arrête automatiquement si la température ambiante est supérieure à 65 °C.
- Pression ambiante : Le MicroGC s'arrête automatiquement si la pression est supérieure à 120 kPa.
- Altitude de fonctionnement maximale : certifié jusqu'à 2000 m au-dessus du niveau de la mer.
- Utilisation en intérieur

12.4 Modules chromatographiques

- Jusqu'à 3 modules
- 1 ou 2 gaz vecteurs

12.4.1 Gaz vecteurs

- Compatible avec hélium, hydrogène, azote et argon avec raccords 1/8" Swagelok.
- Pression d'entrée : minimum = 550 ± 20 Kpa (80 ± 3 psi) 5.5 bars
- Pureté minimum : 99,9996% (pour l'analyse de traces 99,9999 % est recommandé)

12.4.2 Echantillon et injection

- Gaz ou vapeurs uniquement
- Pression de l'échantillon : de l'atmosphérique à 14,5 psi max (1 bar)

12.4.3 Injecteur

- Injecteur micro-usiné sans pièces mobiles
- Volume d'injection de 1 à 10 μL
- Injecteur chauffé jusqu'à 110 °C, incluant une ligne de transfert d'échantillon chauffée
- Possibilité de backflush

12.4.4 Colonne

Gamme de température, jusqu'à 180 °C, isotherme

12.4.5 Détecteur

- Détecteur de conductivité thermique (TCD) micro-usiné
- Double voie (flux d'échantillon et flux de référence)
- Volume interne par voie de 200 nL
- Filaments, four

12.4.6 Gamme de fonctionnement du TCD

- Concentration, de 1 ppm à 100 %
- Gamme linéaire dynamique, 10⁶

12.4.7 Limites de détection du TCD

Les limites de détection sont typiques pour des composants sélectionnés, à partir du moment où la longueur de la colonne et les conditions utilisées sont appropriées.

- 0,5 ppm pour des colonnes capillaires WCOT de longueur comprise entre 4 et 10 m.
- 2 ppm pour des colonnes PLOT

12.4.8 Répétabilité

< 0,5 % RSD pour le propane à un niveau de 1 % molaire pour les colonnes WCOT à température et pression constantes.

12.5 Logiciel de pilotage

Soprane II par défaut

13. Déclaration UE de conformité

Nous,

SRA Instruments 210 Rue des Sources 69280 MARCY L'ETOILE FRANCE

En tant que fabricant, nous déclarons sous notre seule responsabilité que le type d'appareil

auquel cette déclaration se rapporte, répond aux Exigences Essentielles de Santé et de Sécurité qui lui sont applicables et qui sont définies par les Directives suivantes ainsi que les ajouts et/ou modifications ultérieurs :

1/ Directive 2014/35/UE, Annexe I 2/ Directive 2014/30/UE, Annexe I

Le respect des exigences ci-dessus a été assuré en appliquant les normes suivantes :

1/ Directive 2014/35/UE – Basse tension

- NF EN 61010-1:2010+A1:2019 "Règles de sécurité pour appareils électriques de mesurage, de régulation et de laboratoire Partie 1 : Exigences générales"
- NF EN IEC 61010-2-081:2020 "Règles de sécurité pour appareils électriques de mesurage, de régulation et de laboratoire – Partie 2-081 : Exigences particulières pour les appareils de laboratoire, automatiques et semiautomatiques, destinés à l'analyse et autres usages"

2/ Directive 2014/30/UE – Compatibilité électromagnétique

- NF EN IEC 61326-1:2021 "Matériel électrique de mesure, de commande et de laboratoire Exigences relatives à la CEM – Partie 1 : Exigences générales"
- NF EN 61000-4-2:2009 "Compatibilité électromagnétique (CEM) Partie 4-2 : techniques d'essai et de mesure – Essai d'immunité aux décharges électrostatiques"
- NF EN IEC 61000-4-3:2020 "Compatibilité électromagnétique (CEM) Partie 4-3 : techniques d'essai et de mesure – Essai d'immunité aux champs électromagnétiques rayonnés aux fréquences radioélectriques"

Conformément aux directives susmentionnées (Module A), l'équipement mentionné ci-dessus est soumis, en ce qui concerne les aspects de conception et de production, au *contrôle interne de la fabrication* : **E FAB 24**

Marcy l'Etoile, le 20 Janvier 2023

Représentant légal, Armando MILIAZZA

14. Annexe I : Piloter un SOLIA depuis Soprane II

Soprane II, lorsqu'il est associé à MassHunter GC-MS Acquisition et MSD Chemstation Data Analysis, permet de piloter le couplage MicroGC/MS SOLIA.

14.1 Installation

La communication entre Soprane II, MassHunter et MSD Chemstation Data Analysis s'effectue par l'intermédiaire de macros informatiques. Ces macros sont déployées automatiquement dans l'arborescence de MassHunter et de MSD Chemstation Data Analysis, lors de l'installation de Soprane II. Il est donc nécessaire d'installer les logiciels Agilent avant de procéder à l'installation de Soprane II. Installer dans cet ordre : MassHunter GC-MS Acquisition, MSD Chemstation Data Analysis (version MassHunter) puis Soprane II en tant qu'administrateur et en suivant les paramètres recommandés.

14.2 Configuration des instruments

14.2.1 Création de l'instrument SOLIA dans Soprane II

🗠 Instru	uments
_	CP 490 LAN 👻
🖞 Conne	ection
Analyzer	10 . 1 . 1 . 101
Adam modu	iles 🔹
Valve	
Solia	490 - 2

Depuis Soprane Configurateur, créer un nouvel analyseur en cliquant sur l'icône « + ». Renseigner ensuite l'adresse IP de l'instrument. Sélectionner « 490 – 2 » pour la catégorie SOLIA (comme sur l'image ci-dessus).

14.2.2 Création de l'instrument MSD dans Agilent GCMS Configuration

- Démarrer Agilent GCMS Configuration en tant qu'administrateur
- □ Sélectionner le numéro d'instrument à configurer (par défaut « 1 »)
- Renseigner le nom de l'instrument (« MSD » par exemple) et l'identité (ID) du laboratoire (facultatif)
- □ Sélectionner le modèle de MSD
- □ Renseigner l'adresse IP du MSD. L'adresse IP de l'instrument s'affiche sur l'écran à l'intérieur du capot supérieur du MSD.

- Spécifier la polarité du quadripôle dans « DC Polarity ». Cette information se trouve à l'intérieur du capot supérieur (« Pos » ou « Neg »)
- Sélectionner « None » pour le modèle du GC
- Sélectionner « Workflow mode : Enhanced »

14.3 Configuration du couplage

Afin de piloter le couplage, il est nécessaire de paramétrer le couplage dans chacun des logiciels. Dans Soprane II, l'activation du couplage s'effectue depuis l'onglet « option » puis « couplage ».

Une fenêtre s'ouvre ensuite. Sélectionner « SOLIA » puis le nom de l'instrument MS créé dans le configurateur GCMS Agilent, comme ci-dessous :

Dans MassHunter, cocher la ligne « Use MSD ChemStation Data Analysis » dans le menu « Method ».

14.4 Contrôle du SOLIA

Une fois ces prérequis de configuration effectués, il est possible de contrôler la vanne de sélection de voie entre les modules µGC et le détecteur MS. Il existe plusieurs moyens de modifier la position de cette vanne. Depuis l'onglet « Statut », en cliquant sur la barre située au-dessus du schéma :

Les noms des différents modules s'affichent à l'écran. Cliquer sur le module à coupler au détecteur MS.

Lors du lancement d'analyses, dans l'onglet « Démarrage » :

Démarrer analyse	- ×	(
Mode	~	(
 Analyse Séquence Etalonnage 	Nombre d'analyses <u>1 + —</u> En continu ?	
Analyse	~	e
Recommencer la série à Nom de la série Echantillon 3	0 Méthode * Method 1	1PBQ+1 ited,BF) 0°C
C:\Soprane II\Analysis\Solia	*	,
Solia	C - 8m 5CB Heated Injector - Variable	
Options	A - 5mPBQ+10m MS5A.Heated.BF - Back	tflush
Intervalle entre deux injectio	B - 10m PPU Heated Injector, Backflush -	Backflush
Uniquement pour la 1er	analyse Pour toutes les analyses	-
Informations échantil	lon 🗸	m PPU I
Nom échantillon	ID échantillon +-	Backflus).0°C
Commentaires		
Annuler	Valider	

Lors de l'écriture d'une séquence d'analyses : la position de la vanne changera entre les analyses et au cours de la séquence, afin de coupler le module µGC souhaité au détecteur MS pour chaque analyse :

Editer une séquence d'analyse							¤iē∣ m i= ¤ ×
Nom de la sé test court	uence	<u> </u>				Sauveg	jarder Jarder sous
	_			0 🗅 🖶			
	\odot	Nom de la série	Méthode	Durée de purge (sec)	Nombre d'analyses	Module	
		Echantillon 1 👻	Method 1 -	o +-	2 +	Α -	
		Echantillon 1 👻	Method 1 -	o +-	2 +-	Β -	
	_	Echantillon 2 -	Method 2 -	0 + -	2 + -	с -	

14.4.1 Création d'une méthode d'analyse

Une méthode d'analyse SOLIA comprend une méthode d'analyse Soprane et une méthode d'analyse MassHunter.

14.4.2 Création d'une méthode d'analyse Soprane II

Se référer au chapitre 4.3.1.

14.4.3 Création d'une méthode d'analyse MassHunter

Depuis l'onglet « File », sauvegarder la méthode sous le nom souhaité. Editer ensuite la méthode.

Cocher les trois cases :

Edit Method		×
Check Method Sections to Ed	it	
🗹 Method Informa	tion	
☑ Instrument/Acq	uisition	
🗹 Data Analysis		
ок	Cancel	Help
		L

Cocher « Data Acquisition » et « Data Analysis » :

Save Copy of Method With	n Data		
Method Sections to Run			
Pre-Run Macros/Comm	ands		
Instrument C	Control:	 	Browse
Data Ar	nalysis:		Browse
Data Acquisition			
🗹 Data Analysis			
Post-Run Macros/Com	nands		
Instrument C	Control:		Browse
Data Ar	nalysis:		Browse

Sélectionner « Sample Inlet : Other/None » et « Injection Source : External Device »

	Sample Inlet	Other/None ~
	Injection Source	External Device <
		Use MS
let Location	O Bez	ir.

Définir les paramètres MS :

Single Quadrupole MS Method Editor		Single Quadrupole MS Method Editor
------------------------------------	--	------------------------------------

with the set of	ine File						2	00			SIM	Real-Time Plot	Timed Events		
solver Delay 0.00 min Decision Setting NV Value 	une.u					<u>⊢</u> <u>H</u> un lime	2	.00 min				-m /a	Dural Time	Dist lan	Ishel
WV 786 Valve	une Typ	be	EI			Solvent Delay	0	00 min				107.4	Dweir finte		Laber
Volve	ne EM	V	786			Detector Setting									
Actual Setpoint coc 230 230 200 150 150 150 150 150 150 r Type Scan Scan Segments Scan Speed (u/s) frequency (max) 0.00 5.00 150 150 0.00 5.00 150 3.125 [N=1] 14.8 6gments Scan Speed (u/s) frequency (max) Cycle Time (max) 0.00 5.00 150 3.125 [N=1] 14.8 67.76 0.1 egments Scan Speed (u/s) Time (hz) Resolution Factor EMV 0.00 0.00 150.00 150 3.125 [N=1] Resolution Factor Simulation (hz) Warder (hz) Resolution Factor EMV EMV 0.00 Variant (max) Variant (hz) Variant (hz) Variant (hz) Variant (hz) 0.00 Variant (hz) Variant (hz) Variant (hz) Variant (hz) Variant (hz) 0.00 Variant (hz) Variant (hz) Variant (hz) Variant (hz) Variant (hz)	Gas V	alve				Irace Ion Detect	on								
Actual Seport Gain Factor 1.00	Flow				%	EM Setting G	ain Factor	\sim							
roce 230 230 Appled EM Votage (V) 903 a 150 150 150 150 a Type Scan V 903 Segments Imt Sum Limit Te8 (Default) V 0.00 5.00 150.00 154 3.125 [N=1] V 14.8 67.76 0.1 egments Resolution Gain Calculated of lons Tone (ms) Time (Hz) Resolution Gain Calculated 0.00 0 Ime Output V V V V			Actual Se	etpoint		Gain Factor	1.00								
d 150 150 Appy in Type Scan init Surre Linit Surre Surre Linit Surre Surre Dime Sat Mass End Mass Threshold Scan Speed (u/a) Frequency Cycle Time Step Size 0.00 5.00 150.00 15(3.125 [N=1] 14.8 67.76 0.1 egments EM Dime Group Name Number Total Dwell Cycle EM EM 0.00 O O O O O O Ime Factor EMV 0.00 O O O O O O O Ime Ime <td>Source</td> <td>ce 🗌</td> <td>230</td> <td>230</td> <td></td> <td>Applied FM Voltage (</td> <td>903</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Source	ce 🗌	230	230		Applied FM Voltage (903								
Int Sum Limit Te8 (Default) Segments Imme Start Mass End Mass Threshold Scan Speed (u/e) Frequency (coole Time Step Size (m/s)) 0.00 5.00 150.00 150 Scan Speed (u/e) Frequency (coole Time Step Size (m/s)) 0.00 5.00 150.00 150 Start Mass End Mass Group Name Number Time (ms) Time (Hz) Resolution Factor EMV Select 0.00 Start Mass	Quad	1	150	150	Apply	EM Saver									
Type Scan Control Control Segments Frequency Cycle Time Step Size (m/z) 0.00 5.00 150.00 150 3,125 [N=1] 14.8 67.76 0.1						Limit S	um Limit 1e8 (Def.	ault)	10						
Segments Start Mass End Mass Threshold Scan Speed (u/s) Frequency: (scans/sec) Cycle Time Step Size (m/s) 0.00 5.00 150.00 150 150 0 14.8 67.76 0.1	ition	Туре	Scan		~		and canine 100 (Den	anan j							
Ime Start Mass End Mass Threshold Scan Speed (u/s) Frequency (scans/sec) Cycle Time Step Size (ms) 0.00 5.00 150.00 150 150 14.8 67.76 0.1	ime Se	egments													
0.00 5.00 150.00 150 3.125 [N=1] 14.8 67.76 0.1 egnents Imme Group Name Number Total Dwell Cycle Resolution Gain Calculated 0.00	Tì	me	Start Mass	End Mass	Threshold	Scan Speed (u/s)	Frequency (scans/sec)	Cycle Time	Step Size						
egnents Time (ns) Total Dwell Cycle Resolution Factor EMV Gain Calculated EMV O 00		0.00	5.00	150.00	150	3 125 [N=1]	14.8	67.76	01						
Output Name of lons Time (Hz) Time (Hz) Factor EMV 0.00	T	ginerice	Group Nam		Number	Total Dwell Cycl	e Poo	Gain	Calculated						
	1	me	Group Name	e	of lons	Time (ms) Time	(Hz) Hesi	Facto	r EMV	_					
		0.00		_			_	~		_					

SRA recommande les paramètres ci-dessus par défaut, à modifier en fonction de l'application. Le « Run Time » doit être égal ou plus grand que la durée d'analyse Soprane II.

Cocher « Quant Report » (essentiel pour la transmission des résultats vers Soprane II) puis sauvegarder la méthode.

Select Reports

Percent Repo	rt		
LibSearch Re	port		
🔽 Quant Report			
Custom Repo	t		
🗖 Update Custo	m Database		
	ок	Cancel	Help
	UK		elp

×

14.5 Traitement des résultats

Soprane II offre la possibilité de réunir l'ensemble des résultats µGC (détection TCD) et MS dans un même tableau, comme ci-dessous.

						Résultats µGC	Résultats MSD
	Analyse	Date d'injection	Série	Méthode	C1 (A)	I	
Ŷ							
>	Gaz_002	19/10/2018 11:53	Gaz	Test BF	10,012		
	Gaz_003	19/10/2018 11:56	Gaz	Test BF	10,021		
	Gaz_004	19/10/2018 11:58	Gaz	Test BF	10,014		
	Gaz_005	19/10/2018 12:01	Gaz	Test BF	10.035		
	Gaz_006	19/10/2018 12:04	Gaz	Test BF	10,041		
	Gaz_007	19/10/2018 12:07	Gaz	Test BF	10,044		
	Gaz_008	19/10/2018 12:09	Gaz	Test BF	10,021		
	Gaz_009	19/10/2018 12:12	Gaz	Test BF	10,022		
	Gaz_010	19/10/2018 12:17	Gaz	Test BF	10,024		
	Min				10,012		
	Avg				10,026		
	Max				10,044		
	Rsd (%)				0,114		

Le tableau ci-dessus réunit les résultats TCD des modules µGC (indiqués par les lettres (A), (B) et (C)), ainsi que les résultats MSD.

14.5.1 Création d'une méthode de traitement Soprane II

Se référer au chapitre 4.5.

14.5.2 Création d'une méthode de traitement MSD Chemstation Data Analysis

Ouvrir MSD Chemstation Data Analysis et charger la méthode d'acquisition utilisée. La méthode de traitement doit être la même que celle d'acquisition pour que la transmission des résultats vers Soprane II puisse se faire.

Dans l'onglet « SOLIA Coupling » de MSD Chemstation Data Analysis, cliquer sur « Add Custom macro in method ».

👺 Enhanced Data Analysis - GN LOURDS.M / REPET 10_009.D (MS Data: Quantitated Multi Pt., Not Reviewed)

File	Method	d Cł	hroma	togram	Spec	trum	Calibrat	e Q	uantitate	e Exp	oort R	eports	Тоо	ls O	ptions	Viev	N	Solia coupling	Help	
5		6	6	F L	2 💂	() *		围	8	- 6	诸	Ē	a y	1	A		1	Add Custo	om macro in method	
10	1		-					٧	1.1.	~	~	4	4.2	4 4	+ +	-	0	Delete Cu	stom macro in method	
W SE	A.L.	M.			1 🗠	1 党	L JOL	1 91 × 92	- <u>m</u>	<u>ش</u>	10	.	*	1/2/		E	1		🕹 🗆 B 🖏 🖥	та 🚺 🥳
		Brov	vse	f		Abunda	nce	_									1			
1				1	- 1	1.6e+	07													
		₽~	mesu mesu	re pompe /	`	1.55e-	07													
	E	÷	mesu mesu	re pompe re pompe		1.5e+	.07													
	[÷- 📄	mesu	re pompe		1.45e-	.07													
		±	mesu	te bombe		1.4e-	07													
	E	±	repet	10_005.		1.35e-	.07													
		÷	repet	10_007.		1.3e-	.07													
		₽~ 	repet	10_008. t 10_00		1.25e+	07					4								
		÷.	repet	.cqData 10 010.		1.2e+	.07													
	E			t 10_01		1.15e-	07													
	[repe	t 10_01	i I	1.1e-	07													
		÷.	i repe	.cqData t 10 01		1.05e+	.07					ľ								
	6	÷	repet	.cqData 10_014.		1e-	07-													

Depuis l'onglet « Chromatogram », cliquer sur « AutoIntegrate » puis modifier les paramètres d'intégration dans « MS Signal Integration parameters » si nécessaire. Sauvegarder ensuite les paramètres d'intégration sous le nom souhaité :

D:\MassH	unter\GCMS\1	\methods\defa	ult.m\	
D. shidson	anter ta cimo m	anechods (dera	GICTLY	

Depuis l'onglet Calibration, cliquer sur « Set Up Quantitation »

:4 to C5				
Locating Peaks				
Reference Window	2.000	Minutes]	
Non-Reference Window	1.000	Minutes]	
Correlation Window	0.100	minutes		
(signal-to-signal retention time	: match)		🔲 Use R	TEINT
New Compound Info				
Integration Parameter File	INTEGRATION.E			Browse
Measure	Area	-		
Default +/-	0.500	min around exp RT		
Curve Fit		Linear Regression		
Data point weight for linear reg	ressions	Equal v	veighting	
	×			
Units of concentration				

Renseigner les champs « Calibration Title », « Integration Parameter File » (cliquer sur browse et charger le fichier d'intégration précédemment sauvegardé) et « Units of concentration ». Décocher « Use RTEINT » puis cliquer sur OK.

La fenêtre suivante permet d'ajouter les composés souhaités à la table d'étalonnage. Cliquer sur « Insert Above »

Index	Ret. Time	Signal	Compound Name	
1 2 3 4	0.418 0.455 0.581 0.638	0.00 0.00 0.00 0.00	iC4 nC4 2methylC5 C5 [END OF COMPOUN	ID LIST]
¢				3
before Compo	ound Name denotes ISTD			
	11-2-2-2 (21-2-2) (21-2-2) (21-2-2)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Effectuer un double clic droit sur le sommet du pic chromatographique à ajouter afin de définir son temps de rétention dans l'étalonnage. Définir le nom du composé.

A ce stade, il est également possible de sélectionner des ions target utilisés pour la quantification. Pour ce faire, cliquer simultanément sur clic gauche et clic droit sur le pic m/z du spectre de masse à prendre en compte.

Cliquer sur « Save » pour passer au composé suivant, et sur « Exit » lorsque tous les composés ont été ajoutés à la table.

Calibration Data File (Selection ignored by Selection ignored by Selection 181019/Gaz	equence)		
 C. Soprane in Winaysis (Solia (101013) (242_ 	005.0		
 Add Level (supply new Calibration Level) 	ID)		- Level IDs
Compound Concentration:	1.0		New Level ID
ISTD Concentration:	0.000000		1
			Existing Level II
C Undate Level (select existing Calibration	Level ID)		1
	C Average	C Replace	
Retention Times	C Average	C Replace	
Г Replace Qualifier Ion Relative F	lesponses		
🗖 Update Mass Assignments			
C Delete Level (select existing Calibration	Level ID)		,

Renseigner les champs « Compound concentration » et « New Level ID »

La fenêtre ci-dessous s'ouvre ensuite, résumant l'ensemble des paramètres d'étalonnage par composé. La concentration de chaque composé peut être modifiée par niveau depuis l'onglet « Calibration ».

iodicitaly. If the thing	C Name	C Index		Find Compound	
ompound Database	Identification Calibration Us	er-Defined Advanced Rep	porting		
kternal Standard Lompoun C6	Name C6		Concentration Units 🛛	Compound Type	
i IC4 inC4 2methylC5 I C5	Signals to Be Used for Quar Ret Time 0.986 Extract signals from 0.500 0.500 + 0.5 This is 0.486 to Quant signal TIC m/z Quant signal TIC 10 m/z Relative Resp Target TIC 10 0.0 Q2 0.00 0. Q3 0.00 0. Level Concentr. 1 1.000000	nilitation RRT 500 • Min × % 1.486 minutes • X Uncertainty ponse Rel 500 0.50 500 0.50 500 0.50 500 0.50 500 0.50 500 0.50	Quantitation Options Quantitation type Sample ISTD Concentration Measure response by Identify by Maximum number of hits Subtraction Method Curve Fit Weight Response 1.00e+007 5.00e+006	Target compound 0.000000 Area Meets qualifiers, Best RT 9 Extend Area Quant Linear Regression Equal weighting C6	
			0	0.5 1	1

Cliquer sur « OK » et sauvegarder la méthode depuis l'onglet « Method ».

15. Annexe II : Colonnes

15.1 Colonnes Molsieve 5Å

La colonne Molsieve 5Å est conçue pour séparer : l'hydrogène, le monoxyde de carbone, le méthane, l'azote, l'oxygène et certains gaz nobles. Les composants à masse moléculaire plus élevée présentent des temps de rétention plus élevés dans cette colonne.

Paramètre	Chauffé à 4 m	Non chauffé à 10 m	Non chauffé à 20 m
Température de la colonne	110 °C	40 °C	40 °C
Température de l'injecteur	110 °C	NA	NA
Pression de la colonne	100 kPa (15 psi)	150 kPa (21 psi)	200 kPa (28 psi)
Durée d'échantillonnage	30 s	30 s	30 s
Durée d'injection	40 ms	40 ms	40 ms
Durée de fonctionnement	25 s	140 s	210 s
Sensibilité du détecteur	Auto	Auto	Auto
Pic 1	Hydrogène 1,0 %	Néon 18 ppm	Néon 18 ppm
Pic 2	Argon/Oxygène 0,4 %	Hydrogène 1,0 %	Hydrogène 1,0 %
Pic 3	Azote 0,2 %	Argon 0,2 %	Argon 0,2 %
Pic 4		Oxygène 0,2 %	Oxygène 0,2 %
Pic 5		Azote 0,2 %	Azote 0,2 %

20 40 60 80 100 120 140 160

secondes

m٧

4,5

3,5

2,5

1,5

0,5

0

0

1²

3

2

1

4

15.2 Colonnes CP-Sil 5 CB

Les composants du gaz naturel, pour la plupart des hydrocarbures, sont séparés dans le même ordre dans les colonnes CP-Sil CB non polaires et moyennement polaires. L'azote, le méthane, le dioxyde de carbone et l'éthane ne sont pas séparés dans ces colonnes. Ils produisent un pic composite. Pour la séparation de ces composants prévoir une colonne HayeSep A.

Paramètre	Chauffé à 4 m	Non chauffé à 6 m
Température de la colonne	50 °C	50 °C
Température de l'injecteur	110 °C	NA
Pression de la colonne	150 kPa (21 psi)	150 kPa (21 psi)
Durée d'échantillonnage	30 s	30 s
Durée d'injection	40 ms	40 ms
Durée de fonctionnement	30 s	30 s
Sensibilité du détecteur	Auto	Auto
Pic 1	Équilibrage composite	Équilibrage composite
Pic 2	Éthane 8,1 %	Éthane 8,1 %
Pic 3	Propane 1,0 %	Propane 1,0 %
Pic 4	i-Butane 0,14 %	i-Butane 0,14 %
Pic 5	n-Butane 0,2 %	n-Butane 0,2 %

- Tableau 2 -

CP Sil 5 CB 4 m chauffé

CP Sil 5 CB 6 m non chauffé

15.3 Colonnes CP Sil 13 et 19 CB

Paramètre	CP-Sil 13 CB chauffé à 12 m (TBM)	CP-Sil 19 CB chauffé à 6 m (THT)
Température de la colonne	40 °C	85 °C
Température de l'injecteur	50 °C	85 °C
Pression de la colonne	250 kPa (38 psi)	200 kPa (25 psi)
Durée d'échantillonnage	30 s	30 s
Durée d'injection	255 ms	255 ms
Durée de fonctionnement	80 s	35 s
Sensibilité du détecteur	Auto	Auto
Pic 1	Équilibrage du méthane	Équilibrage de l'hélium
Pic 2	TBM 6,5 ppm	THT 4,6 ppm
Pic 3		n-décane 4,5 ppm

- Tableau 3 -

m٧ 0,6 1 0,4 0,2 2 0 - 0,2 -0,4 -0,6 -0,8 0 10 20 30 40 50 60 70 80 90 secondes

CP Sil 13 CB 12 m chauffé (TBM)

CP Sil 19 CB 6 m non chauffé (THT)

15.4 Colonne PoraPlot 10 m

Paramètre	PoraPlot U chauffé à 10 m	PoraPlot Q chauffé à 10 m
Température de la colonne	150 °C	150 °C
Température de l'injecteur	110 °C	110 °C
Pression de la colonne	150 kPa (21 psi)	150 kPa (21 psi)
Durée d'échantillonnage	30 s	30 s
Durée d'injection	40 ms	40 ms
Durée de fonctionnement	100 s	50 s
Sensibilité du détecteur	Auto	Auto
Pic 1	1	Équilibrage composite
Pic 2	2	Éthane 8,1 %
Pic 3	3	Propane 1,0 %
Pic 4	4	i-Butane 0,14 %
Pic 5	5	n-Butane 0,2 %

- Tableau 4 -

PoraPlot U 10 m chauffé

PoraPlot Q 10 m chauffé

15.5 Colonne Hayesep A 40 cm chauffée

La colonne HayeSep A sépare l'oxygène, le méthane, le dioxyde de carbone, l'éthane, l'acétylène, l'éthylène et des gaz à teneur en soufre sélectionnés. L'azote co-élue avec l'oxygène. Les composants avec une masse moléculaire plus élevée que le propane présentent des temps de rétention plus longs dans cette colonne.

Paramètre	Hayesep A 40 cm chauffé	
Température de la colonne	50 °C	
Température de l'injecteur	110 °C	
Pression de la colonne	150 kPa (21 psi)	
Durée d'échantillonnage	30 s	
Durée d'injection	40 ms	
Durée de fonctionnement	60 s	
Sensibilité du détecteur	Auto	
Pic 1	Azote 0,77 %	
Pic 2	Equilibrage du méthane	
Pic 3	Ethane 8,1 %	

La température maximale permise dans cette colonne est de 160 °C.

- Tableau 5 -

15.6 Colonnes CO_X et Al₂O₃/KCl

Paramètre	COx non chauffé à 1 m	Al ₂ O ₃ /KCl chauffé à 10 m
Température de la colonne	80 °C	100 °C
Température de l'injecteur	NA	110 °C
Pression de la colonne	200 kPa (28 psi)	150 kPa (21 psi)
Durée d'échantillonnage	30 s	30 s
Durée d'injection	40 ms	40 ms
Durée de fonctionnement	204 s	60 s
Sensibilité du détecteur	Auto	Auto
Pic 1	Hydrogène 1,0 %	Équilibrage composite
Pic 2	Azote 1,0 %	Éthane 8,1 %
Pic 3	CO 1,0 %	Propane 1,0 %
Pic 4	Méthane 1,0 %	i-Butane 0,14 %
Pic 5	CO ₂ 1,0 %	n-Butane 0,2 %
	Equilibrage de l'hélium	

- Tableau 6 -

15.7 Colonnes MES (NGA) et CP-WAX 52 CB

Paramètre	MES chauffé à 10 m (NGA)	CP-WAX 52 CB chauffé à 4 m
Température de la colonne	90 °C	60 °C
Température de l'injecteur	110 °C	110 °C
Pression de la colonne	70 kPa (10 psi)	150 kPa (21 psi)
Durée d'échantillonnage	30 s	30 s
Durée d'injection	500 ms	40 ms
Durée de fonctionnement	120 s	35 s
Sensibilité du détecteur	Auto	Auto
Pic 1	Equilibrage de l'azote	Azote 0,75 %
Pic 2	n-décane 11,2 ppm	Acétone 750 ppm
Pic 3	MES 14,2 ppm	Méthanol 0,15 %
Pic 4		Ethanol 0,30 %
		Equilibrage de l'hélium

- Tableau 7 -

MES 10 m chauffé (NGA)

CP-WAX 52 CB 4 m chauffé

16. Annexe III : Questions fréquemment posées (FAQ)

16.1 Mon détecteur indique un défaut au niveau du statut, que dois-je faire ?

Si le détecteur affiche un défaut dans le statut de Soprane :

- 1. Vérifiez que vous avez correctement purgé les colonnes en téléchargeant une méthode de purge avant de démarrer le détecteur, que la tubulure de gaz vecteur est serrée et de qualité, et reliée à un tube en acier inoxydable à une pression de 5,6 bars.
- 2. Vérifiez qu'un flux de gaz vecteur est présent à la sortie des colonnes (à l'arrière du MicroGC). Si ce n'est pas le cas sur l'une des deux sorties, contactez le service après-vente SRA Instruments.
- 3. Vérifiez que le gaz vecteur utilisé est correctement configuré dans le logiciel Soprane Setup.

Si toutes ces vérifications sont effectuées et correctes, veuillez télécharger à nouveau la méthode de purge et regarder le statut.

Si le détecteur est de nouveau en défaut, contactez le service après-vente SRA Instruments.

16.2 Mon capteur de pression indique un défaut au niveau du statut, que dois-je faire ?

- 1. Vérifiez que la tubulure du gaz vecteur est correctement alimentée, serrée et avec une pression de 5,6 bars.
- 2. S'il y a deux entrées de gaz vecteur sur le MicroGC, vérifiez que les deux entrées sont correctement connectées.
- 3. Si nécessaire, vérifiez que le gaz vecteur arrive effectivement à la sortie du tube de gaz vecteur, à l'entrée MicroGC.
- 4. Vérifiez que les sorties des colonnes sont à la pression atmosphérique et qu'elles ne sont pas obstruées.

Si toutes ces vérifications sont effectuées et correctes, téléchargez à nouveau la méthode et regardez le statut.

Si le capteur de pression est de nouveau en défaut, contactez le service après-vente SRA Instruments.

16.3 Je change de gaz vecteur, que dois-je faire ?

Avant de changer le type de gaz vecteur, suivez la procédure pour éteindre votre MicroGC.

Ensuite, configurez le type de gaz vecteur tel qu'il est décrit dans le paragraphe 7.1.1.

Il est ensuite fortement recommandé de réaliser une régénération pendant une nuit minimum pour purger toutes les colonnes et rééquilibrer la colonne avec l'utilisation d'un nouveau gaz.

N'oubliez pas qu'une mauvaise configuration de gaz vecteur peut endommager irrémédiablement le détecteur.

