MicroGC R990 avec OBC

Manuel d'utilisation

Cher utilisateur,

Merci d'avoir choisi ce produit SRA Instruments.

Ce manuel présente les différentes informations nécessaires pour une bonne utilisation de votre appareil. Si toutefois, vous avez besoin de renseignements complémentaires ou si vous rencontrez des problèmes, vous pouvez contacter notre <u>Service Après-Vente</u> :

> Hotline: +33 (0)4 78 44 22 09 E-mail : service@sra-instruments.com

SRA Instruments 210 rue des Sources 69280 Marcy l'Etoile FRANCE

Tel : +33 (0)4 78 44 29 47 info@sra-instruments.com www.srainstruments.com

Table des matières

1. PREAMBULE	7
2. INSTRUCTIONS DE SECURITE	7
2.1 Pour votre protection	7
2.2 Informations relatives à la sécurité et à la réglementation	8
2.3 Précautions générales relatives à la sécurité	9
2.4 Pour commencer	10
3. TRANSPORT, NETTOYAGE ET ELIMINATION DE L'INSTRUMENT	10
3.1 Instructions relatives au transport	10
3.2 Nettoyage	11
3.3 Elimination de l'instrument	11
4. APERÇU DE L'INSTRUMENT	11
4.1 Présentation	11
4.2 Principe de fonctionnement	12
4.3 Vue de face	12
4.4 Vue arrière	13
4.4.1 Entrées gaz et évents	13
4.4.2 Communication	14
4.5 Vue interne	15
4.5.1 Vue de dessus	15
4.5.2 Vue de dessous	16
4.6 Cycle du MicroGC avec pression constante	16
5. INSTALLATION ET UTILISATION	17
5.1 Exigences de pré-installation	17
5.2 Vérifier les emballages d'expédition	17
5.3 Déballage du MicroGC	17
5.4 Prévoir les outils et accessoires nécessaires à l'installation	18
5.4.1 Outils	18
5.4.2 Accessoires	18
5.5 Recommandations avant installation	18
5.6 Installation du MicroGC R990 : les 4 règles d'or	19
5.6.1 Etape 1 : Connecter le ou les gaz vecteurs	19
5.6.2 Raccords pour tubes	20
5.7 Lignes d'échantillon	22
5.7.1 Introduction	22
5.7.2 Modes d'échantillonnage	22

	5.8 Sortie rejet échantillon	22
	5.9 Utilisation de l'écran tactile	23
	5.10 Contrôle à distance du R990	24
	5.10.1 Contrôle à distance de l'OBC	24
	5.10.2 Brancher un moniteur sur l'OBC	24
6.	PROCEDURE DE DEMARRAGE	25
	6.1 Mettre en route le chromatographe	25
	6.2 Démarrer le logiciel	25
	6.3 Charger la méthode PURGE	25
	6.4 Charger la méthode d'essai	26
	6.5 Effectuer une série d'analyses	26
7.	PROCEDURE D'ARRET	27
	7.1 Arrêts courts (moins de 2 semaines)	27
	7.2 Arrêts prolongés du R990	27
	7.3 Déplacement de l'analyseur	27
8.	LE MODULE ANALYTIQUE MICROGC	28
	8.1 Contrôle électronique dynamique des gaz (DEGC)	28
	8.2 Circuit d'échantillonnage inerte	28
	8.3 Injecteur	28
	8.4 Colonne	29
	8.4.1 Colonnes Molsieve 5Å	30
	8.4.2 Colonnes CP-Sil 5 CB	31
	8.4.3 Colonnes CP Sil 13 CB et CP Sil 19 CB	32
	8.4.4 Colonne PoraPlot 10 m	33
	8.4.5 Colonne Hayesep A 40 cm	34
	8.4.6 Colonnes COx et Al ₂ O ₃ /KCl	35
	8.4.7 Colonnes MES (NGA) et CP-WAX 52 CB	36
	8.4.8 Conditionnement de colonne	37
	8.5 Option de rétrobalayage	37
	8.5.1 Mise au point du moment de rétrobalayage (sauf pour une voie HayeSep A)	39
	8.5.2 Pour désactiver le rétrobalayage	39
	8.6 Backflush to Detector	39
	8.6.1 Backflush to Detector CP-Sil 5 CB	40
	8.6.2 Backflush to Detector Al ₂ O ₃	40
	8.6.3 Réglage du temps de rétrobalayage	40
	8.6.4 Pour désactiver le rétrobalayage	42
	8.6.5 Définir le temps d'inversion du signal	42
	8.6.6 Vérifier les informations	42
	8.6.7 Calcul du pouvoir calorifique (C6+)	44

8.7 μ-catharomètre	44
9. COMMUNICATIONS	45
9.1 E/S numérique externe (SUB-D25)	45
9.2 Brochage des SUB-D9	45
10. ERREURS	46
10.1 Gestion des erreurs	46
10.2 Liste d'erreurs	46
11. DONNEES TECHNIQUES	57
11.1 Alimentation électrique	57
11.2 Dimensions et poids	57
11.2.1 Dimensions	57
11.2.2 Poids	57
11.3 Environnement de travail	57
11.4 Modules chromatographiques	57
11.4.1 Gaz vecteurs	57
11.4.2 Echantillon et injection	58
11.4.3 Injecteur	58
11.4.4 Colonne	58
11.4.5 Détecteur	58
11.4.6 Gamme de fonctionnement du TCD	58
11.4.7 Limites de détection du TCD	58
11.4.8 Répétabilité	58
11.5 Ordinateur embarqué (OBC)	58
11.6 Modbus (optionnel)	59
11.7 Entrées / Sorties	59
11.8 Logiciel de pilotage	59
12. DECLARATION UE DE CONFORMITE	60
13. QUESTION FREQUEMMENT POSEES (FAQ)	61
13.1 Mon détecteur indique un défaut au niveau du statut, que dois-je faire ?	61
13.2 Mon capteur de pression indique un défaut au niveau du statut, que dois-je faire ?	61
13.3 Je change de gaz vecteur, que dois-je faire ?	61
14. ANNEXE 1 : UTILISATION DE L'APPLICATION FACE AVANT	62
14.1 Affichage du statut de l'instrument	62
14.2 Démarrage d'analyses/séquences	63
14.2.1 Analyses	63
14.2.2 Séquences	63
14.3 Affichage des résultats	64

14.4 Paramétrage de l'application	
14.3.4 Calculs personnalisés sur Excel	67
14.3.3 Entrées analogiques	
14.3.2 Calculs spécifiques	65
14.3.1 Affichage des composés	64

1. Préambule

Pour des raisons de clarté, ce manuel ne contient pas toutes les informations détaillées concernant tous les types de couplage. De plus, il ne peut pas décrire chaque cas possible concernant l'installation, l'utilisation et la maintenance.

Si vous avez besoin d'informations complémentaires concernant cet appareil ou si vous rencontrez certains problèmes qui ne sont pas suffisamment approfondis dans ce manuel, vous pouvez demander de l'aide auprès de SRA Instruments.

Le contenu de ce manuel ne fait partie d'aucun accord, engagement ou statut légal précédent ou existant et ne change pas ces derniers. Tous les engagements de SRA Instruments sont contenus dans les contrats de vente respectifs qui contiennent aussi les seules et entières conditions de garantie applicables. Ces conditions de garantie mentionnées dans le contrat ne sont ni étendues ni limitées par le contenu de ce manuel.

2. Instructions de sécurité

Informations importantes

Cet instrument a été conçu pour des analyses chromatographiques d'échantillons préparés de manière appropriée. Il doit fonctionner avec les gaz et les solvants adéquats et dans les plages de pression, de flux et de températures maximales spécifiées, comme décrit dans ce manuel. Si l'équipement est utilisé d'une manière non spécifiée par SRA Instruments, la protection fournie par l'équipement peut en être diminuée.

D'autre part, il est de votre responsabilité d'informer le SAV de SRA Instruments si le MicroGC a été utilisé pour l'analyse d'échantillons dangereux, avant toute maintenance de l'instrument ou lorsqu'un instrument est renvoyé pour réparation.

2.1 Pour votre protection

Avertissements :

Avertissement : Danger électrique

Ne remplacez pas les composants alors que le câble d'alimentation est branché. Pour éviter toute blessure, coupez toujours l'alimentation électrique avant de les toucher. Installez le MicroGC R990 de manière à ce que l'accès au câble d'alimentation soit facile. Assurez-vous que vous branchez le câble sur une prise raccordée à la terre, sinon il y a un risque létal.

Avertissement : Surfaces chaudes

Plusieurs pièces du MicroGC R990 fonctionnent à des températures suffisamment hautes pour causer de graves brûlures.

Ces pièces incluent, entre autres :

- le four
- les colonnes

Vous devez faire extrêmement attention de manière à éviter de toucher ces surfaces chauffées. N'utilisez pas l'appareil si le MicroGC R990 est désassemblé.

Avertissement : La décharge électrostatique est une menace pour l'électronique

La décharge électrostatique peut endommager les cartes électroniques du MicroGC R990. Si vous devez tenir une carte électronique, portez un bracelet anti électricité statique et tenez-la par les bords.

Avertissement : Utilisation de gaz

N'utilisez pas de gaz qui peuvent former un mélange explosif. Evitez d'utiliser l'hydrogène comme gaz vecteur ou gaz de purge pour vos analyses.

Avertissement concernant l'utilisation d'hydrogène

L'utilisation de l'hydrogène (H₂) comme gaz vecteur peut engendrer des risques de feu ou d'explosion. Assurez-vous que l'alimentation est coupée jusqu'à ce que toutes les connexions soient effectuées.

L'hydrogène est hautement inflammable. Toute fuite d'hydrogène confinée dans un espace fermé peut entraîner des risques d'incendie ou d'explosion.

A chaque utilisation d'hydrogène, vérifiez l'étanchéité des raccords, des canalisations et des vannes avant de vous servir de l'instrument. Avant toute intervention sur l'instrument, coupez toujours l'alimentation en hydrogène à la source.

- L'hydrogène est combustible sur une large plage de concentrations. A la pression atmosphérique, il est combustible pour une concentration volumique comprise entre 4 et 74,2 %.
- De tous les gaz, l'hydrogène est celui qui présente la plus grande vitesse de combustion.
- L'hydrogène possède une très faible énergie d'inflammation.
- En cas de détente brutale dans l'atmosphère, l'hydrogène peut s'enflammer spontanément.
- La flamme de l'hydrogène est peu lumineuse et peut passer inaperçue sous un bon éclairage ambiant.

Avertissements relatifs à aux produits chimiques

Lors de la manipulation ou de l'utilisation de produits chimiques à préparer ou à utiliser dans le MicroGC, il est impératif de respecter toutes les règles locales et nationales de sécurité au laboratoire. Conformez-vous toujours aux procédures d'exploitation standard et aux règles découlant de l'analyse de sécurité interne du laboratoire, concernant, entre autres, l'utilisation appropriée de l'équipement de protection individuel et des flacons de stockage, ainsi que la bonne manipulation des produits chimiques. L'inobservation des règles de sécurité au laboratoire peut entraîner des blessures corporelles, potentiellement mortelles.

2.2 Informations relatives à la sécurité et à la réglementation

Cet instrument et ses documents d'accompagnement sont conformes aux spécifications CE et aux exigences de sécurité relatives à l'équipement électrique pour le mesurage, le contrôle et l'utilisation en laboratoire.

Cet appareil a été soumis à essai et répond aux limites exigées par la réglementation. Ces limites sont conçues pour fournir une protection raisonnable contre des interférences préjudiciables lorsque l'équipement est en fonctionnement dans un environnement commercial. L'équipement génère, utilise et peut émettre une énergie de fréquence radio. S'il n'est pas installé et utilisé conformément au manuel d'utilisation, il peut générer des interférences préjudiciables aux communications radio.

NOTICE : Cet instrument a été soumis à essai conformément aux exigences applicables de la Directive CEM nécessaire pour porter la marque CE. Ainsi, l'équipement peut être exposé à des niveaux de radiation/d'interférence ou des fréquences hors des limites testées.

Ce symbole confirme que le R990 est conforme à la législation pour tout ce qui concerne la sécurité électrique.

2.3 Précautions générales relatives à la sécurité

Suivez les pratiques de sécurité suivantes pour garantir un fonctionnement sans risque de l'équipement :

- Effectuez des vérifications périodiques des fuites sur toutes les lignes d'alimentation et de la tuyauterie pneumatique.
- Les lignes de gaz ne doivent pas être coudées ni percées. Placez les lignes hors du passage et à distance de chaleurs ou fraîcheurs extrêmes.
- Évitez toute exposition à des tensions potentiellement dangereuses. Débranchez l'instrument de toutes les sources d'alimentation avant le retrait des panneaux de protection.
- Lorsque l'utilisation de prise et de cordon d'alimentation, qui ne sont pas d'origine, est nécessaire, assurez-vous que le cordon de remplacement correspond au code couleur et à la polarité décrits dans le manuel et à tous les codes de sécurité locaux de fabrication.
- Remplacez les cordons d'alimentation défectueux ou abimés immédiatement par un cordon de même type et de même calibre.
- Placez l'instrument à un endroit suffisamment ventilé afin d'éliminer les gaz et vapeurs. Assurez-vous qu'il y a assez d'espace autour de l'instrument afin qu'il puisse refroidir suffisamment.
- Avant de brancher l'instrument ou de l'allumer, assurez-vous que la tension et les fusibles sont réglés de manière appropriée selon votre source électrique locale.
- N'allumez pas l'instrument s'il y a un risque de dommage électrique. Débranchez le cordon électrique et contactez SRA Instruments.
- Le cordon d'alimentation fourni doit être inséré dans une prise électrique avec une prise de terre de protection. Lorsque vous utilisez une rallonge, assurez-vous que le cordon est mis à la terre de manière convenable.
- Ne modifiez pas les mises à la terre externes ou internes car vous pourriez vous mettre en danger ou endommager l'instrument.
- L'instrument est correctement mis à la terre lorsqu'il est expédié. Aucune modification des connexions électriques ou du châssis de l'instrument ne doit être effectuée afin d'en garantir le bon fonctionnement.
- Lorsque vous travaillez avec cet instrument, suivez les réglementations des Bonnes pratiques de Laboratoires (BPL). Portez des lunettes de sécurité et une tenue appropriée.
- Ne placez pas de contenants avec des liquides inflammables sur cet instrument. Renverser du liquide sur des pièces chaudes peut causer un incendie.
- Cet instrument peut utiliser des gaz inflammables ou explosifs, tel que l'hydrogène sous pression. Avant d'utiliser l'instrument, assurez-vous de bien connaître et de suivre avec précision les procédés de fonctionnement élaborés pour ces gaz.
- N'essayez jamais de réparer ou de remplacer un composant non décrit dans ce manuel sans l'assistance de SRA Instruments. Des réparations ou des modifications non autorisées entraîneront l'annulation de la garantie.

- Déconnectez toujours le cordon d'alimentation CA avant tout essai de réparation.
- Utilisez les outils adéquats lorsque vous travaillez sur l'instrument afin d'éviter de vous mettre en danger ou d'endommager l'instrument.
- N'essayez pas de remplacer la batterie ou un fusible de l'instrument par des pièces qui ne seraient pas spécifiées dans le manuel.
- L'instrument pourrait être endommagé s'il était stocké dans des conditions défavorables durant de longues périodes. (Par exemple, l'instrument peut être endommagé s'il est stocké dans un endroit chaud, en contact avec de l'eau ou d'autres conditions excédant les conditions de fonctionnement admissibles).
- Ne fermez pas le flux dans la colonne lorsque la température du four est élevée car cela pourrait endommager la colonne.
- Cet instrument a été conçu et testé selon des normes de sécurité reconnues ; il est conçu pour un usage en intérieur.
- Si l'instrument est utilisé d'une manière non spécifiée par le fabricant, la protection fournie par l'instrument peut en être diminuée.
- Un échange de pièces ou une modification non autorisée sur l'instrument peuvent compromettre la sécurité.
- Des modifications non expressément approuvées par la partie responsable pourraient rendre l'utilisation de l'instrument non conforme à la législation.

2.4 Pour commencer

- Vérifiez que la tension de fonctionnement de l'appareil est compatible avec celle de votre réseau électrique avant de le mettre en route. L'appareil peut être endommagé dans le cas contraire.
- Utilisez uniquement des gaz et solvants spécifiés dans les procédures d'utilisation.
- N'ouvrez pas l'appareil sans l'autorisation d'SRA Instruments.
- Eliminez de l'environnement de l'appareil : les vibrations, tout effet magnétique et les gaz explosifs.
- Le MicroGC R990 doit être utilisé seulement en intérieur ; il est conçu pour une utilisation à température ambiante et dans des conditions où aucune condensation ne peut apparaître. Installez le MicroGC R990 sur une surface rigide et stable.
- Faites entretenir votre appareil par SRA Instruments.

3. Transport, nettoyage et élimination de l'instrument

3.1 Instructions relatives au transport

Si votre MicroGC doit être transporté pour une quelconque raison, il est très important de suivre les instructions de préparation d'expédition supplémentaires :

- Placez tous les capuchons d'évents à l'arrière du MicroGC.
- Fournissez toujours l'alimentation électrique.
- Ajoutez, si utilisés, le ou les filtres d'entrée.

3.2 Nettoyage

Pour nettoyer la surface du MicroGC :

- 1. Éteignez le MicroGC.
- 2. Retirez le cordon d'alimentation.
- 3. Positionnez les bouchons de protection sur les entrées d'échantillon et les entrées de gaz.
- 4. Positionnez les bouchons d'entrée sur les évents de la colonne.
- 5. Utilisez une brosse souple (ni dure, ni abrasive) afin de brosser avec soin toute la poussière et la saleté.
- 6. Utilisez un chiffon doux et propre humidifié avec un détergent doux pour nettoyer l'extérieur de l'instrument.
 - 0 Ne nettoyez jamais l'intérieur de l'instrument.
 - N'utilisez jamais d'alcool ou de diluants pour nettoyer l'instrument ; ces produits chimiques 0 peuvent endommager le boîtier.
 - Assurez-vous de ne pas mouiller les composants électroniques.
 - N'utilisez pas d'air comprimé pour nettoyer l'instrument. 0

3.3 Elimination de l'instrument

Lorsque le MicroGC ou ses pièces ont atteint leur fin de vie utile, éliminez-les conformément aux réglementations environnementales applicables dans votre pays.

Ne jetez pas cet appareil. Adressez-vous à un organisme de recyclage compétent.

4. Aperçu de l'instrument

4.1 Présentation

Le MicroGC R990 est un rack dans leguel sont associées au maximum 4 voies analytiques de MicroGC 990. Il est disponible en 2 versions : avec ou sans ordinateur embarqué (OBC, pour On Board Computer).

Rack 5U

4.2 Principe de fonctionnement

Le MicroGC R990 peut être équipé de 1 à 4 voies analytiques indépendantes (1 voie = 1 module). Chaque voie est un GC miniaturisé et complet, comportant :

Module

- Un injecteur micro-usiné
- Une colonne analytique de petit diamètre
- Un micro catharomètre (µ TCD)
- Un régulateur de gaz électronique

Le chapitre 8 donne un aperçu détaillé du fonctionnement d'un module analytique MicroGC.

4.3 Vue de face

La face avant est composée de :

- Un interrupteur de veille
- Une LED indiquant la mise sous tension ainsi que l'état du MicroGC
- Un port USB 3.2
- Un écran tactile TFT 7" 24 bit 1024 x 600 pixels
- Une plaque regroupant les caractéristiques de l'appareil

Descriptif de la LED :

Etat de la LED	Indication
Rouge - fixe	Erreur récupérable
Rouge - clignotante	Erreur critique
Jaune - fixe	Système non prêt ou en stabilisation
Jaune - clignotante	Système en état de rinçage ou de chauffage de la colonne
Vert - fixe	Système prêt : les statuts de la zone chauffée, de la pression en tête de colonne et du TCD apparaissent dans la fenêtre Ready
Vert - clignotante	Système en cours d'analyse

4.4 Vue arrière

4.4.1 Entrées gaz et évents

#	Désignation	Type de connecteur	Préconisations	En option
1	Entrées échantillon 1 & 2	Raccord pour tube 1/8" mâle inerte + fritté	Pression 1 bar relatif max ; gaz	non
2	Entrées gaz vecteur	Raccord pour tube 1/8" mâle + fritté	Pression 5,5 bar ; Pureté 99,9995 %	non
3	Events référence et analyse	Raccord pour tube 1/8" mâle	Pression atmosphérique	non
4	Events backflush	Raccord pour tube 1/8" mâle	Pression atmosphérique	non
5	Events échantillon	Raccord pour tube 1/8" mâle	Pression atmosphérique	non
6	Electrovanne 3 voies 2 positions	Raccord pour tube en 1/8"	Pression 1 bar relatif max ; gaz	oui
7	Vanne multi-positions type VICI (4 à 16 voies)	Raccord pour tube 1/8"	Pression 1 bar relatif max	oui
8	Filtre Génie	Raccord pour tube 1/16"	Pression 1 bar relatif max	oui

Remarque : Pour l'analyse de traces, la pureté du gaz préconisée est 99,9999 %.

Notes :

(1) L'électrovanne 3 voies permet de sélectionner la voie d'échantillon ou de calibration. Elle est pilotée par la carte mère du MicroGC (relais 1).

(2) La vanne multi-positions est pilotée par le port COM 2 du R990.

(3) Possibilité de traitement sulfinert pour le filtre Génie.

4.4.2 Communication

#	Type de connecteur	Source	Désignation	Utilisation
1	USB 2.0 (x2)	OBC	Prise clavier et souris	Opérations de maintenance
2	LAN	OBC	Prise Ethernet	Contrôle, affichage et Modbus
			Ports COM 01 et COM 03	
3	SUB-D9 mâle (x2)	OBC	configurables en RS 232 /	VICI ou Modbus
			RS 485 ou RS 422	
4	VGA Screen out	OBC	Prise écran	Opérations de maintenance
5	SUB-D9 mâle	OBC	Port COM 02 (RS232)	VICI ou Modbus
6	SUR D25 fomalla	Carte mère	Entrás/Sortis numáriques	Pilotage d'instrument ou de
0	SOB-DZS Termelle	MicroGC	Entree/sol tie humenques	composants externes
	Power In +			
7	Interrupteur +		Alimentation électrique	
	Fusible			

Optionnel :

Type de connecteur	Source	Désignation	Utilisation
Bornier à vis avec 4 entrées analogiques 0-10 V ou 0-20 mA (configurables individuellement)	Carte mère MicroGC	Entrées analogiques	Capteur externe
Bornier à vis avec 4 x 4-20 mA	Module ADAM	Sorties numériques	Transmission des résultats
Bornier à vis avec 4 x relais 5 A - 250 V	Module ADAM	Sorties relais	Pilotage équipement externe

4.5 Vue interne

4.5.1 Vue de dessus

- 1 : Modules analytiques
- 2 : Clarinette chauffée

3 : Capteur de pression (option)

Il utilise une entrée analogique 0-10 V de la carte mère du MicroGC. Il permet de mesurer la pression de l'échantillon à son entrée dans le chromatographe.

Dynamique de mesure: -1 à 1,5 bar relatif Précision: +/- 60 mbar

! Attention : la pression est indiquée en bars absolus dans le logiciel Soprane CDS.

4.5.2 Vue de dessous

4 : OBC

5 : Carte mère du MicroGC

4.6 Cycle du MicroGC avec pression constante

Le diagramme temporel ci-après présente un aperçu du cycle du MicroGC.

Cette description n'est valable que pour une voie. Dans la plupart des cas, lorsqu'un système à deux ou trois voies est utilisé, la séquence est la même mais les paramètres relatifs à la durée peuvent varier. Si la durée d'échantillonnage dans la voie A et la voie B ou C est différente, la durée la plus longue sera utilisée. La durée d'analyse peut être spécifiée pour chaque voie ; l'acquisition de données s'arrête pour chaque voie dès que la durée d'analyse s'est écoulée. La durée d'analyse totale dépend de la durée d'analyse la plus longue.

TEMPS

Manuel d'utilisation MicroGC R990 avec OBC - Version 1.4

5. Installation et utilisation

Ce chapitre décrit comment installer et utiliser l'instrument.

5.1 Exigences de pré-installation

Préparez le site d'installation comme décrit dans le manuel « Prérequis d'installation MicroGC R990 ».

5.2 Vérifier les emballages d'expédition

Le MicroGC sera livré dans une grande boîte et dans un ou plusieurs cartons plus petits. Inspectez les cartons avec soin pour la présence de dommages ou de signes de manipulation brutale. Déclarez les dommages au transporteur et à SRA Instruments.

5.3 Déballage du MicroGC

Déballez le MicroGC et les accessoires avec soin et transférez-les dans la zone de travail en utilisant les techniques de manipulation appropriées. Inspectez l'instrument et les accessoires avec soin pour les dommages ou les signes de manipulation brutale. Déclarez les dommages au transporteur et à SRA Instruments.

Avertissement : Afin d'empêcher toute sollicitation excessive ou blessure du dos, suivez les précautions de sécurité lorsque vous soulevez des objets lourds.

! L'instrument a été protégé lors du transport par des capuchons protecteurs (voir image ci-dessous). Avant utilisation, retirez ces capuchons, y compris ceux présents sur le panneau arrière.

5.4 Prévoir les outils et accessoires nécessaires à l'installation

5.4.1 Outils

- Tube 1/8" en cuivre ou inox pour raccordement de l'arrivée en gaz vecteur
- Tube 1/8" inox pour raccordement de l'arrivée en échantillon
- Ecrous 1/8" et férules
- Deux clefs 7/16"
- Une clef 5/16"
- (Une clef 1/4")
- Un tournevis Torx T-20

5.4.2 Accessoires

Détecteur de fuites électronique (optionnel).

<u>Rq</u> : N'utilisez pas de détecteur de fuite liquide : le liquide peut contaminer l'analyseur.

5.5 Recommandations avant installation

Ventilation

Evitez de rejeter les effluents gazeux dans un endroit susceptible de subir des variations de pression (vent ou rejets avec température variable). Les variations de pression peuvent affecter la stabilité de la ligne de base et la sensibilité de l'analyseur. Pour les rejets hors pression atmosphérique (par exemple boîtes à gants) n'hésitez pas à contacter SRA Instruments pour définir une solution adaptée.

<u>Tubes</u>

- Le diamètre des tubes dépend de la distance entre la bouteille de gaz et l'analyseur ainsi que du débit total nécessaire. L'utilisation de tube 1/8" est correcte pour une longueur de ligne inférieure à 5 m. Au-delà, ou lorsque plusieurs analyseurs sont reliés à la même arrivée de gaz, l'utilisation de tube 1/4" est préférable.
- N'utilisez pas de scellements : ils peuvent contenir des matériaux volatils susceptibles de contaminer le circuit de distribution.

Optimisation de la pureté du gaz

Pour disposer de la meilleure qualité de gaz vecteur sur votre analyseur :

- Utilisez un réducteur de pression adapté au besoin.
- Utilisez des tubes et des férules adaptés.
- Purgez correctement les volumes morts avant de raccorder le tube à votre analyseur.
- Confirmez l'absence de fuites grâce à un détecteur électronique.
- Envoyez toujours au MicroGC une méthode de purge (avec TCD OFF) pour purger les volumes morts de l'analyseur et de la colonne avant de mettre le détecteur ON.

5.6 Installation du MicroGC R990 : les 4 règles d'or

La technologie MicroGC est facile à utiliser. Aucune connaissance chimique ou analytique n'est nécessaire pour l'utilisation de base et la mise en place. Cependant, comme pour tout instrument d'analyse, il existe des règles importantes à respecter pour protéger votre instrument et ses fonctionnalités.

Ces règles peuvent être présentées comme "les 4 règles d'or" :

- Pression du gaz vecteur
- Qualité du gaz vecteur
- Pression de l'échantillon
- Qualité de l'échantillon

Ne pas respecter ces règles augmente fortement le risque d'endommager votre instrument. Toutes les procédures standards pour utiliser le MicroGC découlent de ces 4 règles d'or : la qualité du gaz vecteur nécessitera une purge du tube pour assurer ce niveau de qualité.

5.6.1 Etape 1 : Connecter le ou les gaz vecteurs

Installer les régulateurs de gaz et définir les pressions

Les cylindres de gaz vecteur doivent présenter un régulateur de pression à deux étages afin d'ajuster la pression de gaz vecteur à 550 kPa ± 10 kPa (80 psi ± 1,5 psi). Réglez la pression du régulateur de cylindre afin qu'elle corresponde à la pression d'entrée de gaz.

Connecter le gaz vecteur au MicroGC

Le MicroGC supporte l'utilisation de l'hélium, de l'azote, de l'argon et de l'hydrogène. La pureté du gaz vecteur recommandée est de 99,9995 % minimum. Connectez le gaz vecteur via les ports **Carrier Gas In 5,5 Bar** (1 ou 2) et ouvrez le flux de gaz.

Important :

N'utilisez pas de tubes en plastique car l'air diffusé dans les tubes pourrait rendre les lignes de base bruyantes et réduire la sensibilité. Les tubes en métal doivent être nettoyés pour une utilisation du MicroGC. Achetez des tubes propres prévus pour la chromatographie.

L'utilisation d'hélium en tant que gaz vecteur avec le MicroGC configuré pour Ar/N2 diminuera la sensibilité du détecteur (environ 10 fois), inversera les pics, sans autre incidence.

L'utilisation de l'argon comme gaz vecteur avec le MicroGC configuré pour l'hélium détruira les Δ filaments du TCD.

Le gaz vecteur doit circuler avant la mise sous tension de l'analyseur.

5.6.2 Raccords pour tubes

Les branchements pneumatiques utilisent des raccords pour tubes. Si vous n'êtes pas familier de ce type de raccords, prenez connaissance de la procédure décrite ci-après.

Matériel nécessaire :

- Tube cuivre préconditionné 1/8" •
- Ecrou 1/8" et férules
- Deux clefs 7/16" •

5.7 Lignes d'échantillon

ATTENTION

L'échantillon doit être propre et sec. Bien que le filtre interne élimine de nombreux contaminants particulaires, les échantillons contenant des aérosols, des quantités excessives de matières particulaires, des concentrations élevées en eau et d'autres contaminants peuvent endommager votre instrument. La présence d'acides (HF, HCl, H₂SO₄ et HNO₃) est interdite.

La pression d'entrée de l'échantillon doit être inférieure à 1 bar relatif et sa température doit être de 100 °C au maximum.

5.7.1 Introduction

Le conditionnement de l'échantillon doit être effectué à proximité immédiate de manière à réduire les lignes. L'échantillonnage comporte des volumes et des lignes de transfert directement reliés à l'arrivée en face arrière du MicroGC.

5.7.2 Modes d'échantillonnage

Vous devrez disposer d'un matériel de montage approprié pour connecter l'échantillon au MicroGC ou à un accessoire.

L'échantillonnage et le conditionnement sont des points essentiels pour obtenir une bonne analyse et des résultats corrects. Il est important d'étudier cette partie aussi bien que possible.

Echantillon à pression supérieure à une atmosphère

La meilleure solution consiste à utiliser une boucle secondaire proche du MicroGC et à une pression proche de la pression atmosphérique. Cette méthode offre de meilleurs résultats qu'une connexion directe de l'échantillon à l'entrée MicroGC.

Lors d'un étalonnage, il suffira de raccorder le mélange étalon à la place de l'échantillon.

S'il est nécessaire de travailler sous pression, gardez à l'esprit que l'échantillon et l'étalon doivent se trouver à la même pression.

Echantillon disponible à la pression atmosphérique

Dans ce cas les pompes d'aspiration du MicroGC permettront de faire circuler l'échantillon pendant un temps réglable dans les boucles des injecteurs des modules analytiques avant l'injection. Voici quelques exemples d'échantillons à pression atmosphérique :

- air atmosphérique : ex. contrôle de la pollution atmosphérique en ligne
- sac Tedlar : il suffira d'adapter une aiguille de seringue sur l'entrée échantillon de l'analyseur, l'aiguille sortante sera plantée dans le septum du sac qui sera présenté.
- ampoule avec septum : c'est le même principe qu'avec le sac Tedlar mais ici on ne pourra faire que quelques analyses parce que l'ampoule sera rapidement mise en dépression.

5.8 Sortie rejet échantillon

Nous recommandons, dans le cas de l'utilisation de 2 gaz vecteurs différents (Argon & Hélium), de ne pas regrouper les sorties. Différents types de gaz vecteurs doivent avoir des échappements différents. Laissez ces sorties à une pression constante (presque) atmosphérique pour éviter des "pointes" sur le signal du TCD.

5.9 Utilisation de l'écran tactile

L'application de la face avant du Rack 990 est une représentation simplifiée des conditions du MicroGC et permet également le démarrage d'analyses/séquences ; l'affichage des chromatogrammes n'est pas prévu.

Ce chapitre présente brièvement les fonctionnalités de l'application ; pour plus de détails reportez-vous à l'annexe 1 (chapitre 14).

La fenêtre principale se compose d'un bandeau de commandes générales à gauche et d'un cadre à droite affichant les données correspondant à l'onglet sélectionné dans le bandeau.

Onglets du bandeau :

Status : par défaut l'application affiche le statut actuel de l'instrument, par modules. Pour chaque module, l'état (prêt, non prêt) des différents éléments (injecteur, colonne, gaz vecteur ...) est indiqué.

Analysis : il est possible de démarrer une analyse ou une séquence directement via l'application en sélectionnant cet onglet.

Results : vous accédez à différents types de résultats : résultats des composés, résultats des calculs spécifiques selon les normes. Il est également possible de visualiser l'affichage des entrées analogiques ainsi que les calculs personnalisés sur Excel.

Administrator (ou Login) : pour démarrer directement les analyses depuis l'onglet "Analysis", vous devez avoir les droits nécessaires (définis par l'administrateur dans Soprane CDS).

Settings : plusieurs paramètres peuvent être configurés en cliquant sur cet onglet : langue, nom de l'analyseur, de la méthode, de la voie d'échantillonnage, etc.

5.10 Contrôle à distance du R990

5.10.1 Contrôle à distance de l'OBC

L'ordinateur embarqué du R990 peut être contrôlé à distance par liaison réseau via la commande "Bureau à distance" de Windows.

Pour accéder à celle-ci :

- Cliquez sur le menu "Démarrer" de votre ordinateur
- Allez dans "Tous les programmes", "Accessoires"
- Cliquez sur "Connexion Bureau à distance"

 Ensuite entrez le nom de l'ordinateur embarqué. Par convention, celui-ci s'appelle R990-XXXX; remplacez XXXX par le numéro de série de l'appareil.

퉣 Remote	Desktop Connection	_		×
N	Remote Desktop Connection			
Computer: Usemame: You will be a	<mark>1990-2431</mark> R990-2431\user sked for credentials when you con	nect.	~	
Show C	Options	Connect		Help

- L'OBC demandera un login et un mot de passe selon la session choisie : voir chapitre 6.2.

5.10.2 Brancher un moniteur sur l'OBC

Le R990 est pourvu d'une sortie VGA à l'arrière du rack permettant de connecter un moniteur doté d'un câble VGA.

Vous pouvez également brancher un clavier/Touchpad sur un port USB de l'analyseur.

6. Procédure de démarrage

La procédure de démarrage inclut les différentes étapes présentées dans les paragraphes ci-dessous.

6.1 Mettre en route le chromatographe

Après la connexion et l'alimentation du R990 en gaz vecteur, vous pouvez installer l'alimentation secteur et allumer l'analyseur. L'interrupteur est situé sur le panneau arrière.

La LED 'POWER' s'allume. Pour l'instant, le gaz vecteur ne circule pas dans les colonnes.

6.2 Démarrer le logiciel

Pour accéder au PC de l'analyseur (OBC), connectez directement écran, clavier et souris sur l'appareil. Vous pouvez également utiliser l'outil de commande à distance Windows via la liaison Ethernet (voir § 5.10.1).

Pour ce faire, vous devez saisir le login et le mot de passe suivants selon la session :

<u>Session user :</u> LOGIN : R990-XXXX\user, avec XXXX comme numéro de série de l'analyseur MOT DE PASSE : Operateur

<u>Session admin :</u> LOGIN : R990-XXXX\admin, avec XXXX comme numéro de série de l'analyseur. MOT DE PASSE : MICROGC-SRA

Après une minute, vous pourrez lancer le logiciel Soprane CDS pour démarrer vos analyses si celui-ci ne s'est pas lancé automatiquement.

Lors de la configuration de votre analyseur dans notre usine, nous utilisons généralement de l'hélium comme gaz vecteur pour les tests. Vous pouvez lancer Soprane Configuration pour examiner cette dernière si nécessaire.

Pour cela, reportez-vous au manuel d'utilisation du logiciel Soprane CDS.

6.3 Charger la méthode PURGE

Lorsque vous mettez en route le MicroGC, ce dernier va charger la dernière méthode utilisée avant l'arrêt de l'appareil.

L'ensemble du circuit pneumatique interne contient de l'air. Si vous avez correctement suivi la procédure pour connecter le gaz vecteur à l'instrument, vous avez purgé le tube externe et la connexion. Il est maintenant nécessaire de purger les collecteurs internes, les régulateurs et la colonne en chargeant une méthode "purge".

Pour chaque module, chargez une méthode de ce type :

- Injecteur : 30 °C
- Colonne : 30 °C
- Pression : 30 PSI
- Détecteur : OFF

Les autres paramètres n'ont aucune incidence car aucune analyse ne sera faite avec cette méthode.

Le gaz vecteur circule et purge l'ensemble du système, y compris le détecteur.

Laissez le MicroGC purger pendant environ 10 minutes.

6.4 Charger la méthode d'essai

Au premier démarrage, effectuez une vérification afin de vous assurer que le MicroGC fonctionne correctement.

Une méthode d'essai pour chaque type de colonne standard a été fournie dans les sections répertoriées dans le Tableau ci-dessous.

Si vous commandez une colonne Molsieve, assurez-vous qu'elle a été conditionnée avant l'utilisation. Voir § 8.4.1 pour les paramètres.

Type de colonne	Tableau
Molsieve 5A	Tableau 1 à la page 30
CP-Sil 5 CB	Tableau 2 à la page 31
CP Sil 13 CB et CP Sil 19 CB	Tableau 3 à la page 32
PoraPlot 10 m	Tableau 4 à la page 33
Hayesep A 40 cm	Tableau 5 à la page 34
COx 1 m et Al ₂ O ₃ /KCI	Tableau 6 à la page 35
MES (NGA) et CP-WAX 52 CB	Tableau 7 à la page 36

Utilisez le système de données pour définir les paramètres de vérification pour chaque voie GC. Appliquez les paramètres de procédure de vérification au MicroGC et laissez l'instrument se stabiliser aux conditions de fonctionnement initiales. Surveillez l'état de l'instrument en utilisant l'affichage de statut du système de données (consulter l'aide relative au système de données pour plus de détails).

Chaque méthode d'essai a été établie pour déterminer si la voie de l'instrument fonctionne correctement et comprend un exemple de chromatogramme d'essai.

6.5 Effectuer une série d'analyses

- 1. Créez une courte séquence d'au moins trois analyses en utilisant un échantillon d'essai et un procédé.
- 2. Effectuez la séquence.
- 3. Après une première analyse, les résultats pour chaque voie doivent être similaires aux chromatogrammes d'exemples.

7. Procédure d'arrêt

Il existe différentes possibilités pour lesquelles vous devrez arrêter votre R990 :

- Arrêts courts (moins de 2 semaines)
- Arrêts prolongés (plus de 2 semaines).

7.1 Arrêts courts (moins de 2 semaines)

Afin de maintenir les meilleures performances d'exploitation, nous vous recommandons de laisser l'instrument allumé avec un gaz vecteur qui circule dans le système.

Pour ce faire, créez une méthode qui :

- Eteint le filament du détecteur
- Maintient une petite purge de gaz vecteur à travers le système
- Baisse la température de la colonne

7.2 Arrêts prolongés du R990

Pour éteindre le R990 :

- 1. Téléchargez une méthode avec ces paramètres :
 - Injecteur : OFF
 - Colonne : OFF
 - Pression : 30 PSI
 - Détecteur : OFF
- 2. Attendez que la température de la colonne soit inférieure à 60 °C.
- 3. Coupez l'alimentation et débranchez tout cordon d'alimentation d'accessoire.
- 4. Dès que l'analyseur est éteint, il n'y a plus de gaz qui circule dans le MicroGC. Alors seulement, vous pouvez fermer l'alimentation en gaz vecteur.

Ces procédures aident à empêcher la contamination et la dégradation de la colonne.

7.3 Déplacement de l'analyseur

Voici quelques recommandations utiles si vous souhaitez déplacer votre analyseur.

- Suivez la procédure d'arrêt décrite dans le paragraphe 7.2.
- Débranchez les raccords échantillon et gaz vecteur. Mettez des bouchons sur les entrées.
- Emballez correctement l'analyseur en prenant soin de protéger la face avant et l'écran.
- L'analyseur est lourd ; il est préférable d'être à 2 pour le soulever.
- Assurez-vous de respecter les températures de stockage durant le transport.
- Assurez-vous que l'appareil est suffisamment protégé de l'humidité et de la condensation.
- Ne posez pas de charges lourdes directement sur l'appareil.

8. Le module analytique MicroGC

Le MicroGC R990 peut comprendre 1 à 4 modules analytiques. Un module comprend un régulateur de gaz, un injecteur, une colonne et un μ -catharomètre (voir schéma ci-dessous).

Ce chapitre fournit une brève analyse des composants majeurs du MicroGC et de l'option de rétrobalayage.

8.1 Contrôle électronique dynamique des gaz (DEGC)

Les MicroGC comportent des régulateurs intégrés pouvant être ajustés afin d'obtenir un contrôle de la pression constant et programmé, qui, une fois le contrôle de pression constant et programmé effectué, entraîne un flux constant et programmé à travers l'injecteur, la colonne et le détecteur. La gamme de pression est de 50 à 350 kPa (7 à 50 psi). Cette pression établit un flux continu de gaz vecteur d'environ 0,2 à 4,0 mL/min (selon la longueur et le type de colonne).

8.2 Circuit d'échantillonnage inerte

Le MicroGC R990 est équipé d'un circuit d'échantillonnage traité Ultimetal[™]. Ce procédé de désactivation garantit l'intégrité de l'échantillon et aide à atteindre les meilleures limites de détection possibles.

La désactivation s'applique au tubage allant de l'entrée d'échantillon jusqu'aux modules.

8.3 Injecteur

L'injecteur a été conçu avec une boucle d'échantillonnage de 10 μ L remplie d'échantillon gazeux. La pression de l'échantillon doit se situer entre 0 et 100 kPa (0 à 15 psi) et la température de l'échantillon entre 0 et 110 °C .

Lorsque le système de données chromatographique envoie une commande START, la pompe d'aspiration conduit l'échantillon de gaz dans la boucle et l'injecteur injecte l'échantillon de gaz de la boucle d'échantillonnage jusqu'au flux gazeux. La durée d'une injection type est de 40 millisecondes (ms). Cela représente un volume d'injection d'environ 1 µL. La durée d'injection sera arrondie par un multiple de 5 ms. La valeur minimale de pratique est de 40 ms. Une valeur se situant entre 0 et 10 millisecondes peut empêcher l'injection.

8.4 Colonne

Plusieurs configurations de colonne sont possibles sur le MicroGC. Les colonnes nécessaires pour vos analyses spécifiques ont été installées en usine. D'autres configurations sont bien sûr possibles. Toutefois, la modification des voies GC est délicate et ne peut être effectuée que par un technicien SRA Instruments. Le tableau ci-dessous présente différentes colonnes standard comme fournies dans les MicroGC et les applications sélectionnées. Les autres colonnes sont disponibles en contactant Agilent Technologies.

Type de colonne/phase	Composants cibles	
Molsieve 5Å	Gaz permanents (séparation (N2/O2), méthane, CO, NO, etc. (20 m sont requis pour	
	une séparation de la ligne de base O2-Ar). Gaz naturel et analyse de biogaz.	
	Configuration de la Stabilité du temps de rétention (RTS) facultative.	
Hayesep A	Analyses d'hydrocarbures C1–C3, N2, CO2, air, solvants volatils	
CP-Sil 5 CB	Analyses d'hydrocarbures C3–C10, aromatiques, solvants organiques, gaz naturel.	
CP-Sil 19 CB	Hydrocarbures C4–C10, solvants à haut point d'ébullition, BTX.	
CP-WAX 52 CB	Solvants volatils polaires, BTX	
PLOT AI2O3/KCI	Hydrocarbures légers C1–C5 saturés et insaturés. Analyse de gaz de raffinerie.	
PoraPLOT U	Hydrocarbures C1–C6, halocarbures/fréons, anesthésiques, H2S, CO2, SO2, solvants	
	volatils. Séparation de l'éthane, de l'éthylène et de l'acétylène.	
PoraPLOT Q	Hydrocarbures C1–C6, halocarbures/fréons, anesthésiques, H2S, CO2, SO2, solvants	
	volatils. Séparation du propylène et du propane, co-élution d'éthylène et d'acétylène.	
CP-COx	CO, CO2, H2, Air (co-élution de N2 et O2), CH4.	
CP-Sil 19CB pour THT	THT et C3–C6+ dans la matrice du gaz naturel.	
CP-Sil 13CB pour TBM	TBM et C3–C6+ dans la matrice du gaz naturel	
MES NGA	Colonne unique testée spécialement pour le MES dans le gaz naturel (1 ppm).	

I Toutes les colonnes, à l'exception des colonnes HayeSep A (160 °C) et MES (110 °C) peuvent être utilisées jusqu'à 180 °C, la température maximale du four de colonne.

Si vous dépassez cette température, la colonne perdra de son efficacité de manière instantanée et le module de colonne devra être remplacé. Toutes les voies comportent une protection empêchant un point de consigne au-dessus de la température maximale.

Manuel d'utilisation MicroGC R990 avec OBC – Version 1.4

8.4.1 Colonnes Molsieve 5Å

La colonne Molsieve 5Å est conçue pour séparer : l'hydrogène, le monoxyde de carbone, le méthane, l'azote, l'oxygène et certains gaz nobles. Les composants à masse moléculaire plus élevée présentent des temps de rétention plus élevés dans cette colonne.

Paramètre	Colonne à 4 m	Colonne à 10 m	Colonne à 20 m
Température de la colonne	110 °C	40 °C	40 °C
Température de l'injecteur	110 °C	50 °C	50 °C
Pression de la colonne	100 kPa (15 psi)	150 kPa (21 psi)	200 kPa (28 psi)
Durée d'échantillonnage	30 s	30 s	30 s
Durée d'injection	40 ms	40 ms	40 ms
Durée de fonctionnement	25 s	140 s	210 s
Sensibilité du détecteur	Auto	Auto	Auto
Pic 1	Hydrogène 1,0 %	Néon 18 ppm	Néon 18 ppm
Pic 2	Argon/Oxygène 0,4 %	Hydrogène 1,0 %	Hydrogène 1,0 %
Pic 3	Azote 0,2 %	Argon 0,2 %	Argon 0,2 %
Pic 4		Oxygène 0,2 %	Oxygène 0,2 %
Pic 5		Azote 0,2 %	Azote 0,2 %

- Tableau 1 -

se condes

8.4.2 Colonnes CP-Sil 5 CB

Les composants du gaz naturel, pour la plupart des hydrocarbures, sont séparés dans le même ordre dans les colonnes CP-Sil CB non polaires et moyennement polaires. L'azote, le méthane, le dioxyde de carbone et l'éthane ne sont pas séparés dans ces colonnes. Ils produisent un pic composite. Pour la séparation de ces composants envisager une colonne PoraPLOT U ou HayeSep A.

Paramètre	Colonne à 4 m	Colonne à 6 m
Température de la colonne	50 °C	50 °C
Température de l'injecteur	110 °C	110 °C
Pression de la colonne	150 kPa (21 psi)	150 kPa (21 psi)
Durée d'échantillonnage	30 s	30 s
Durée d'injection	40 ms	40 ms
Durée de fonctionnement	30 s	30 s
Sensibilité du détecteur	Auto	Auto
Pic 1	Équilibrage composite	Équilibrage composite
Pic 2	Éthane 8,1 %	Éthane 8,1 %
Pic 3	Propane 1,0 %	Propane 1,0 %
Pic 4	i-Butane 0,14 %	i-Butane 0,14 %
Pic 5	n-Butane 0,2 %	n-Butane 0,2 %

⁻ Tableau 2 -

8.4.3 Colonnes CP Sil 13 CB et CP Sil 19 CB

Paramètre	CP-Sil 13 CB à 12 m (TBM)	CP-Sil 19 CB à 6 m (THT)
Température de la colonne	40 °C	85 °C
Température de l'injecteur	50 °C	85 °C
Pression de la colonne	250 kPa (38 psi)	200 kPa (25 psi)
Durée d'échantillonnage	30 s	30 s
Durée d'injection	255 ms	255 ms
Durée de fonctionnement	80 s	35 s
Sensibilité du détecteur	Auto	Auto
Pic 1	Équilibrage du méthane	Équilibrage de l'hélium
Pic 2	TBM 6,5 ppm	THT 4,6 ppm
Pic 3		n-nonane 4,5 ppm

CP Sil 19 CB 6 m (THT)

8.4.4 Colonne PoraPlot 10 m

Paramètre	PoraPlot U à 10 m	PoraPlot Q à 10 m
Température de la colonne	150 °C	150 °C
Température de l'injecteur	110 °C	110 °C
Pression de la colonne	150 kPa (21 psi)	150 kPa (21 psi)
Durée d'échantillonnage	30 s	30 s
Durée d'injection	40 ms	40 ms
Durée de fonctionnement	100 s	50 s
Sensibilité du détecteur	Auto	Auto
Pic 1	Équilibrage composite	Équilibrage composite
Pic 2	Éthane 8,1 %	Éthane 8,1 %
Pic 3	Propane 1,0 %	Propane 1,0 %
Pic 4	i-Butane 0,14 %	i-Butane 0,14 %
Pic 5	n-Butane 0,2 %	n-Butane 0,2 %

- Tableau 4 -

PoraPlot U 10 m

PoraPlot Q 10 m

8.4.5 Colonne Hayesep A 40 cm

La colonne HayeSep A sépare l'oxygène, le méthane, le dioxyde de carbone, l'éthane, l'acétylène, l'éthylène et des gaz à teneur en soufre sélectionnés. L'azote co-élue avec l'oxygène. Les composants avec une masse moléculaire plus élevée que le propane présentent des temps de rétention plus longs dans cette colonne.

La température maximale permise dans cette colonne est de 160 °C.

Paramètre	Hayesep A 40 cm
Température de la colonne	50 °C
Température de l'injecteur	110 °C
Pression de la colonne	150 kPa (21 psi)
Durée d'échantillonnage	30 s
Durée d'injection	40 ms
Durée de fonctionnement	60 s
Sensibilité du détecteur	Auto
Pic 1	Azote 0,77 %
Pic 2	Equilibrage du méthane
Pic 3	Ethane 8,1 %

- Tableau 5 -

Hayesep A 40 cm

8.4.6 Colonnes COx et Al₂O₃/KCl

Paramètre	COx à 1 m	Al₂O₃/KCI à 10 m
Température de la colonne	80 °C	100 °C
Température de l'injecteur	110 °C	110 °C
Pression de la colonne	200 kPa (28 psi)	150 kPa (21 psi)
Durée d'échantillonnage	30 s	30 s
Durée d'injection	40 ms	40 ms
Durée de fonctionnement	204 s	60 s
Sensibilité du détecteur	Auto	Auto
Pic 1	Hydrogène 1,0 %	Équilibrage composite
Pic 2	Azote 1,0 %	Éthane 8,1 %
Pic 3	CO 1,0 %	Propane 1,0 %
Pic 4	Méthane 1,0 %	i-Butane 0,14 %
Pic 5	CO ₂ 1,0 %	n-Butane 0,2 %
	Equilibrage de l'hélium	

- Tableau 6 -

8.4.7 Colonnes MES (NGA) et CP-WAX 52 CB

Paramètre	MES à 10 m (NGA)	CP-WAX 52 CB à 4 m
Température de la colonne	90 °C	60 °C
Température de l'injecteur	110 °C	110 °C
Pression de la colonne	70 kPa (10 psi)	150 kPa (21 psi)
Durée d'échantillonnage	30 s	30 s
Durée d'injection	500 ms	40 ms
Durée de fonctionnement	120 s	35 s
Sensibilité du détecteur	Auto	Auto
Pic 1	Equilibrage de l'azote	Azote 0,75 %
Pic 2	n-décane 11,2 ppm	Acétone 750 ppm
Pic 3	MES 14,2 ppm	Méthanol 0,15 %
Pic 4		Ethanol 0,30 %
	•	Equilibrage de l'hélium

- Tableau 7 -

MES 10 m (NGA)

CP-WAX 52 CB 4 m

8.4.8 Conditionnement de colonne

Suivez cette procédure afin de vous assurer que l'eau pouvant être présente dans la colonne analytique est retirée avant que le TCD ne soit démarré.

Suivez également cette procédure si le module MicroGC a été stocké pendant une longue période.

Les filaments du détecteur peuvent être endommagés par un conditionnement inapproprié. Suivez cette procédure afin d'éviter tout dommage aux filaments du détecteur.

Procédure de conditionnement de colonne

- 1. Éteignez les filaments TCD durant le procédé.
- 2. Établissez la température de colonne du module à la température maximale (110 °C, 160 °C ou 180 °C selon la limite de colonne). Laissez les filaments éteints.
- 3. Réglez la température de l'injecteur à 80 °C.
- 4. Téléchargez cette méthode sur le MicroGC.
- 5. Effectuez la méthode téléchargée pour conditionner la colonne, de préférence durant la nuit.

Vous vous assurez ainsi que toute l'eau a été retirée de la colonne et que les filaments TCD ne subiront aucun dommage.

Fusion de l'azote et de l'oxygène dans les colonnes Molsieve

Dans une colonne activée de manière conforme, l'azote et l'oxygène seront bien séparés. Toutefois, vous remarquerez que ces deux pics commenceront à fusionner. Ceci est dû à l'eau et au dioxyde, présents dans l'échantillon ou le gaz vecteur, s'adsorbant à la phase stationnaire.

<u>Pour retrouver l'efficacité de la colonne</u>, conditionnez la colonne, comme décrit ci-dessus, pendant une heure environ. Après le reconditionnement, vous pouvez soumettre à essai la performance de la colonne en injectant de l'air. Si vous avez une bonne séparation entre l'azote et l'oxygène de nouveau, le pouvoir de séparation de la colonne a été restauré. Si la fréquence d'utilisation du MicroGC est élevée, vous devez laisser de manière constante la température du four à 180 °C la nuit. Plus la période de reconditionnement est longue, plus la performance de la colonne sera excellente.

8.5 Option de rétrobalayage

Les modules analytiques du MicroGC R990 peuvent être équipées de manière facultative d'un rétrobalayage. Celui-ci a l'avantage de permettre la protection de la phase stationnaire de la colonne contre l'humidité et le dioxyde de carbone. De plus, les durées d'analyse sont réduites puisque les composés à élution tardive, donc ne présentant pas d'intérêt, n'entrent pas dans la colonne analytique.

Analyse de gaz naturel, directe

Un système de rétrobalayage comprend toujours une pré-colonne et une colonne analytique. Les deux colonnes sont couplées à un *point de pression*, rendant possible l'inversion de la direction du flux gazeux dans la pré-colonne à un moment prédéfini, appelé le *moment de rétrobalayage*. Voir Figure 2.

L'injecteur, les deux colonnes et le détecteur sont en série.

L'échantillon est injecté dans la pré-colonne lorsque la pré-séparation a lieu. L'injection se déroule en mode normal. Voir Figure 1.

Lorsque tous les composants à quantifier sont transférés dans la colonne analytique, la vanne de rétrobalayage commute (au moment du rétrobalayage). Dans la pré-colonne, le flux est inversé et tous les composants laissés dans la pré-colonne sont rétrobalayés dans l'évent. Dans la colonne analytique, la séparation continue car le flux n'est pas inversé. Voir Figure 2.

Le mode de veille est la configuration du rétrobalayage (si l'instrument est équipé d'une vanne de rétrobalayage facultative).

Le rétrobalayage permet d'économiser le temps nécessaire pour éluer les composants à haut point d'ébullition ne présentant pas d'intérêt et garantit que la pré-colonne fonctionnera dans de bonnes conditions.

8.5.1 Mise au point du moment de rétrobalayage (sauf pour une voie HayeSep A)

Mettre au point le moment de rétrobalayage est nécessaire pour chaque nouvelle voie. Ce chapitre décrit comment mettre au point le moment de rétrobalayage sur toutes les voies sauf sur HayeSep A.

Procédure de mise au point du moment de rétrobalayage

- 1. Réglez le moment de rétrobalayage à 0 s et analysez l'échantillon de vérification ou un échantillon propre à une voie spécifique. Cette opération a pour but d'identifier les composants du mélange d'étalonnage.
- 2. Modifiez le moment de rétrobalayage à 10 s et mettez en route. On observe que :
 - Lorsque le rétrobalayage est trop précoce, les pics visés sont partiellement ou totalement rétrobalayés.
 - S'il est trop tardif, les composants non désirés ne sont pas rétrobalayés et présentés dans le chromatogramme.
- 3. Mettez en fonctionnement avec différents moments de rétrobalayage jusqu'à ce qu'il n'y ait aucune différence importante dans le pic visé. Pour une mise au point précise du moment de rétrobalayage, établissez des étapes plus petites (par exemple 0,10 seconde) jusqu'à ce que vous trouviez le moment de rétrobalayage optimal.

La figure ci-dessous donne un exemple de réglage du temps du rétrobalayage pour la voie CP-Molsieve 5 A.

Effet du rétrobalayage sur le pic d'intérêt

8.5.2 Pour désactiver le rétrobalayage

Pour désactiver le rétrobalayage, définissez le **Moment de rétrobalayage** à **0**. Le système est ainsi en mode normal durant tout le fonctionnement.

8.6 Backflush to Detector

Le "Backflush to Detector" (rétrobalayage vers le détecteur) est une technique avancée qui permet d'éluer les composés à haut point d'ébullition en tant que groupe à travers la colonne de référence, et de les faire apparaître sous la forme d'un seul et même pic sur le chromatogramme juste avant les composés à bas point d'ébullition. L'avantage de cette technique est que le temps d'analyse est réduit. Dans certains cas, l'analyse peut même être effectuée sur une seule voie.

Le MicroGC R990 propose deux types de rétrobalayage vers les canaux du détecteur. Un CP-Sil 5 CB pour l'analyse du gaz naturel et un Al_2O_3 pour l'analyse des gaz de raffinerie. Le canal de rétrobalayage vers le détecteur est réglé en usine pour regrouper les composants C6+.

8.6.1 Backflush to Detector CP-Sil 5 CB

Le canal de rétrobalayage vers le détecteur de MicroGC CP-Sil 5 CB est configuré avec une colonne analytique CP-Sil 5 CB de 8 m et une pré-colonne CP-Sil 5 CB de 0,5 m. Il élue C6+ dans le gaz naturel sous la forme d'un pic unique à travers la colonne de référence, et réduit le temps d'analyse à 90 secondes. Cela est conforme à la norme GPA2172 pour le calcul du pouvoir calorifique.

8.6.2 Backflush to Detector Al₂O₃

Le canal de rétrobalayage vers le détecteur de MicroGC Al_2O_3 est configuré avec une colonne analytique Al_2O_3/KCl de 10 m et une pré-colonne CP-Sil 5 CB de 1 m. Il élue le C6+ dans le gaz de raffinerie en un seul pic à travers la colonne de référence et réduit le temps d'analyse à 210 secondes.

8.6.3 Réglage du temps de rétrobalayage

Pour régler le temps de rétrobalayage approprié pour chaque nouveau canal de détection, suivez soit la "Procédure 5 CB BF2D 8 m", soit la "Procédure Al₂O₃/KCl BF2D 10 m".

a) <u>Procédure 5CB BF2D 8 m</u>

Paramètre	Réglages
Pression de la colonne	150 kPa
Température d'injection	110 °C
Température de la colonne	72 °C
Temps d'injection	40 ms
Durée d'analyse	90 s
Echantillon gazeux	Gaz NGA

- Réglages pour 5CB BF2D 8 m -

1. Réglez le temps de rétrobalayage (BF) à 0 seconde. Lancez une analyse pour obtenir les pics de tous les composés élués.

Enregistrez le temps de rétention (RT) du n-pentane et du 2,2-diméthylbutane.

2. Réglez la durée d'analyse à une valeur supérieure de 10 secondes au temps de rétention du 2,2diméthylbutane. Réglez le temps de BF à 5 secondes. Recommencez l'analyse.

- 3. Augmentez le temps de BF par pas de 0,5 seconde, et lancez une analyse. Observez la hauteur du pic de 2,2-diméthylbutane. Continuez à augmenter le temps de BF jusqu'à ce que le pic du 2,2-diméthylbutane soit observé (hauteur du pic > 3 μ V).
- 4. Réglez finement le temps de BF, trouvez le point de données où le pic du 2,2-diméthylbutane est observé.

Diminuez le temps de BF par pas de 0,1 seconde, et lancez une analyse jusqu'à ce que le pic disparaisse (hauteur du pic < 3 μ V). Réglez le temps de BF pour cette voie à cette valeur moins 0,2 seconde. Un intervalle de temps typique "de coupure nette" pour la voie 5CB BF2D 8m est d'environ 0,3-0,5 seconde (voir chromatogramme ci-dessous).

- Analyse du gaz naturel avec colonne 5CB 8 m -

Paramètre	Réglages
Pression de la colonne	300 kPa
Température d'injection	100 °C
Température de la colonne	90 °C
Temps d'injection	40 ms
Durée d'analyse	600 s
Echantillon gazeux	Gaz RGA

b) Procédure Al₂O₃/KCl BF2D 10 m

- Réglages pour Al₂O₃/KCl BF2D 10 m -

1. Réglez le temps de rétrobalayage (BF) à 0 seconde. Exécutez la méthode pour obtenir les pics de tous les composés élués.

Enregistrez le temps de rétention (RT) du cis-2-pentène et du n-hexane.

- 2. Réglez la durée d'analyse à une valeur supérieure de 10 secondes au temps de rétention du n-hexane. Réglez le temps de BF à 5 secondes. Lancez une analyse.
- Augmentez le temps de BF par pas de 0,5 seconde, et lancez une analyse. Observez la hauteur du pic du n-hexane.
 Continuez à augmenter le temps de BF jusqu'à ce que le pic du n-hexane soit observé (hauteur du pic > 3 μV).
- 4. Réglez finement le temps de BF, trouvez le point de données où le pic de n-hexane est observé. Diminuez le temps de BF par pas de 0,1 seconde, et lancez une analyse jusqu'à ce que le pic disparaisse (hauteur du pic < 3 μV). Réglez le temps de BF pour cette voie à cette valeur moins 0,4</p>

seconde. Un intervalle de temps typique "de coupure nette" pour la voie Al₂O₃ BF2D 10m est d'environ 1-2 seconde (voir chromatogramme ci-dessous).

- Analyse de gaz de raffinage avec colonne Al₂O₃ 10 m -

8.6.4 Pour désactiver le rétrobalayage

Pour désactiver le rétrobalayage, définissez le Moment de rétrobalayage à 0. Le système est ainsi en mode normal durant tout le fonctionnement.

8.6.5 Définir le temps d'inversion du signal

Le temps d'inversion du signal permet à la voie de rétrobalayage vers le détecteur de faire passer le signal d'un pic négatif à un pic positif dans l'intervalle de temps sélectionné.

Reportez-vous au manuel du logiciel pour voir comment inverser le signal.

8.6.6 Vérifier les informations

Paramètres de la méthode	5 CB BF2D 8 m	Al ₂ O ₃ /KCl BF2D 10 m
Gaz vecteur	Hélium	Hélium
Température de la colonne (°C)	72	90
Température de l'injecteur (°C)	110	100
Pression de la colonne (kPa)	150	300
Température de l'entrée échantillon (°C)	110	100
Durée d'échantillonnage (s)	30	30
Temps d'injection (ms)	40	40
Durée de l'analyse (s)	90	600
Sensibilité du détecteur	Auto	Auto

- Paramètres de la méthode pour les colonnes 5CB BF2D 8 m et Al₂O₃/KCl BF2D 10 m -

Identification des pics	5 CB BF2D 8 m	Al ₂ O ₃ /KCl BF2D 10 m
Pic 1	Equilibrage composite	Propane 1,99 %
Pic 2	Ethane 4,06 %	Propylène 0,980 %
Pic 3	Propane 0,520 %	Acétylène 1,06 %
Pic 4	i-Butane 0,0502 %	Propadiène 1,01 %
Pic 5	n-Butane 0,0495 %	i-Butane 0,295 %
Pic 6	Néopentane 0,0101 %	n-Butane 0,295 %
Pic 7	i-Pentane 0,0306 %	trans-2-Butylène 0,303 %
Pic 8	n-Pentane 0,0306 %	i-Butylène 0,295 %
Pic 9	C6+	i-Butylène 0,307 %
Pic 10		cis-2-Butylène 0,306 %
Pic 11		Méthyl acétylène 1,01 %
Pic 12		i-Pentane 0,104 %
Pic 13		1,3-Butadiène 0,311 %
Pic 14		n-Pentane 0,097 %
Pic 15		trans-2-Pentène 0,098 %
Pic 16		2-Méthyl-2-butène 0,046 %
Pic 17		i-Pentène 0,097 %
Pic 18		cis-2-Pentène 0,094 %
Pic 19		C6+

- Identification des pics pour les colonnes 5CB BF2D 8 m et Al $_2O_3$ /KCl BF2D 10 m -

- Analyse du gaz naturel avec 5CB BF2D 8 m -

- Analyse de gaz de raffinage avec Al₂O₃/KCl BF2D 10 m -

8.6.7 Calcul du pouvoir calorifique (C6+)

Pour le calcul du pouvoir calorifique et la configuration de l'application, veuillez vous référer au manuel du logiciel.

8.7 μ-catharomètre

Chaque voie MicroGC est équipée d'un catharomètre (µTCD).

Ce détecteur réagit à la différence de conductivité thermique entre une cellule de référence (gaz vecteur uniquement) et une cellule de mesure (gaz vecteur contenant des composants d'échantillon). La conception d'un µTCD est telle qu'un changement de conductivité thermique du flux de gaz vecteur, en raison de la présence de composants, est comparé à la conductivité thermique d'un flux de gaz de référence constant.

9. Communications

Ce chapitre décrit les ports d'entrée et de sortie accessibles dans le MicroGC R990 pour l'interface avec des dispositifs externes.

9.1 E/S numérique externe (SUB-D25)

Les connexions entre le MicroGC et les dispositifs externes sont effectuées avec le câble approprié au port E/S numérique externe. SRA Instruments recommande fortement l'utilisation d'un cablâge blindé pour cela.

* Contacts de relais maximum 24 Volt 1 Ampère

9.2 Brochage des SUB-D9

Brochage des SUB-D9 en fonction de la configuration de chaque port :

Numéro broche	RS232	RS485	
1		485D-	
2	RX	485D+	
3	тх		
4			
5	GND		

10. Erreurs

10.1 Gestion des erreurs

Durant le fonctionnement, une série d'évènements et de messages d'erreurs sont générés, indiquant le début ou la fin de certaines actions et de procédures, ainsi que de petites erreurs ou des erreurs fatales au sein de l'instrument. Cette section décrit comment le MicroGC réagit à ces évènements ou messages.

Les classes d'erreurs suivantes ainsi que les actions résolutoires sont disponibles :

Classe 0 *Info interne*. Il s'agit d'événements indiquant qu'une certaine procédure a commencé ou s'est terminée. Ils n'influencent en aucun cas le bon fonctionnement de l'instrument.

Classe 1 *Avertissement consultatif* ; l'instrument continue. Il s'agit des avertissements consultatifs les moins critiques ne nécessitant pas d'action immédiate de la part de l'utilisateur. L'analyse en cours peut en être affectée de façon minimale et ne nécessite donc pas d'être arrêtée. Les messages d'erreur de classe 1 indiquent certains dysfonctionnements de l'instrument. Certaines erreurs de ce type empêchent l'instrument d'être prêt.

Classe 2 *Erreurs récupérables pour l'enregistrement* ; arrêt de l'instrument, LED rouge allumée : Il s'agit d'erreurs récupérables pour lesquelles l'utilisateur doit être immédiatement averti (un pop-up ou un avertissement peut apparaître dans le système de données et la LED rouge s'allume). L'analyse en cours est arrêtée car ses résultats seront définitivement erronés. Une action corrective de la part de l'utilisateur ou du service des instruments peut être nécessaire. Ce type d'erreur peut être éliminé sans cycle de mise sous tension.

Classe 3 *Erreurs critiques pour l'enregistrement* ; arrêt de l'instrument, LED rouge allumée : Il s'agit d'erreurs critiques pour lesquelles l'utilisateur doit être immédiatement averti. La LED rouge s'allume. L'instrument s'arrête. Une action corrective de l'utilisateur ou du service est nécessaire. Ce type d'erreur ne peut être effacé qu'avec un cycle de mise sous tension.

Classe 4 *Erreurs fatales pour l'enregistrement* ; arrêt de l'instrument, LED rouge allumée, redémarrage automatique. Il s'agit d'erreurs fatales pour lesquelles l'utilisateur doit être immédiatement averti. La LED rouge s'allume. Un arrêt de l'instrument et un redémarrage automatique se produisent.

Toutes les erreurs, peu importe la classe, sont disponibles dans le système de données sous le statut de l'instrument (pour dysfonctionnement). Toutes les erreurs de classe 1 ou plus sont également enregistrées dans la mémoire flash de l'instrument.

Toutes les erreurs sont identifiées par des numéros construits à partir de la classe d'erreur et d'un numéro. Les évènements ne sont pas numérotés.

10.2 Liste d'erreurs

Le code d'erreur GC est indiqué comme CLNNN dans lequel :

```
C = classe d'erreur (gravité)
L = emplacement
NNN = numéro d'erreur ou numéro d'évènement.
```


La classe d'erreur peut être l'une des valeurs suivantes :

- 0 = info diagnostic
- 1 = avertissement consultatif
- 2 = erreur récupérable
- 3 = erreur critique
- 4 = erreur fatale

Il y a 5 emplacements :

- 0 = carte mère
- 1 = voie 1
- 2 = voie 2
- 3 = voie 3
- 4 = voie 4 •

Le Tableau ci-dessous liste les erreurs possibles :

Code d'erreur	Classe	Message d'erreur	Action recommandée
1	INFO	Init Passed	Aucune action (initialisation réussie).
2	RECOVERABLE	Init Error	Redémarrez l'instrument. Si l'erreur persiste, contactez le support technique.
3	RECOVERABLE	Pressure too low, chan = %d	Vérifier la source de gaz et la pression du canal concerné. Rétablir une pression suffisante, puis relancer l'analyse.
4	CRITICAL	Pressure too high, chan = %d	Arrêtez l'instrument et vérifiez le système de gaz (régulateur, obstruction). Reprendre uniquement une fois la pression revenue à la normale.
5	RECOVERABLE	Pressure cannot reach its setpoint, chan = %d	Vérifiez la présence de fuites ou la source de gaz. Une fois le problème résolu, relancez le système.
6	INFO	Pressure restored, chan = %d	Aucune action (pression revenue à la normale).
7	RECOVERABLE	Sample line temperature fault, chan = %d	Vérifiez que la ligne d'échantillon du canal chauffe correctement. Redémarrez après refroidissement. Si le problème persiste, envisagez de remplacer le chauffage de la ligne d'échantillon.
8	RECOVERABLE	Sample line heater sensor fault, chan = %d	Vérifiez la connexion du capteur de température de la ligne d'échantillon. Si l'erreur persiste, contactez le support pour remplacer le capteur ou le module.
9	CRITICAL	Sample line heater is open, chan = %d	Arrêtez l'appareil. Le chauffage de la ligne d'échantillon est défectueux (circuit ouvert). Remplacez ce module avant de reprendre.
10	CRITICAL	Sample line heater is short, chan = %d	Arrêtez l'appareil. Le chauffage de la ligne d'échantillon est en court-circuit. Contactez le support pour réparation ou remplacement.
11	WARNING	Sample line heating too slow, chan = %d	Patientez jusqu'à atteinte de la température. Vérifiez que l'environnement n'est pas trop froid. Si la lenteur persiste, planifiez une maintenance.
12	INFO	Sample line temperature is restored, chan = %d	Aucune action (température de la ligne d'échantillon normalisée).

Code d'erreur	Classe	Message d'erreur	Action recommandée	
13	RECOVERABLE	Injector temperature fault, chan = %d	Vérifiez si l'injecteur du canal chauffe correctement. Redémarrez une fois refroidi. Si le problème persiste, le module injecteur peut nécessiter un remplacement.	
14	RECOVERABLE	Injector heater sensor fault, chan = %d	Vérifiez la connexion du capteur de température de l'injecteur. Si l'erreur continue, contactez le support pour remplacer le capteur ou le module.	
15	CRITICAL	Injector heater is open, chan = %d	Arrêtez l'analyse. Le chauffage de l'injecteur (canal %d) est coupé (circuit ouvert). Remplacez le module injecteur avant de reprendre.	
16	CRITICAL	Injector heater is short, chan = %d	Arrêtez l'analyse. Le chauffage de l'injecteur (canal %d) est en court-circuit. Faites réparer ou remplacer ce module avant de reprendre.	
17	RECOVERABLE	Injector heating too slow, chan = %d	Attendez que l'injecteur atteigne la température désirée. Si c'est trop long régulièrement, vérifiez l'isolation de l'injecteur ou contactez un technicien.	
18	INFO	Injector temperature is restored, chan = %d	Aucune action (température de l'injecteur rétablie).	
19	RECOVERABLE	Column temperature fault, chan = %d	Vérifiez si la colonne du canal chauffe correctement. Laisse refroidir puis relancez la chauffe. Si le problème persiste, le module de colonne pourrait être à remplacer.	
20	RECOVERABLE	Column heater sensor fault, chan = %d	Vérifiez la connexion du capteur de température de la colonne. Si l'erreur persiste, envisagez de remplacer le capteur ou le module (contactez le support).	
21	CRITICAL	Column heater is open, chan = %d	Arrêtez immédiatement l'analyse. Le chauffage de la colonne (canal %d) est défectueux (circuit ouvert). Remplacez ce module avant de reprendre.	
22	CRITICAL	Column heater is short, chan = %d	Arrêtez immédiatement l'analyse. Le chauffage de la colonne (canal %d) est en court-circuit. Contactez le support pour réparation ou remplacement.	
23	RECOVERABLE	Column heating too slow, chan = %d	Laissez la colonne atteindre sa température. Si la chauffe reste lente régulièrement, vérifiez la température ambiante et l'état de la colonne. Contactez un technicien si nécessaire.	
24	INFO	Column temperature is restored, chan = %d	Aucune action (température de la colonne normale).	
25	RECOVERABLE	Aux zone temperature fault, chan = %d	Vérifiez la chauffe de la zone auxiliaire du canal. Redémarrez si nécessaire. Si l'erreur persiste, faites contrôler ou remplacer le module de chauffe concerné.	
26	RECOVERABLE	Aux zone heater sensor fault, chan = %d	Vérifiez la connexion du capteur de température de la zone auxiliaire. Si l'erreur continue, contactez le support pour remplacer le capteur ou le module.	
27	CRITICAL	Aux zone heater is open, chan = %d	Arrêtez l'appareil. Le chauffage de la zone auxiliaire (canal %d) est défectueux (circuit ouvert). Remplacez le composant ou module associé avant de reprendre.	

Code d'erreur	Classe	Message d'erreur	Action recommandée		
28	CRITICAL	Aux zone heater is short, chan = %d	Arrêtez l'appareil. Le chauffage de la zone auxiliaire (canal %d) est en court-circuit. Faites remplacer le module concerné avant la reprise.		
29	WARNING	Aux zone heating too slow, chan = %d	Patientez pour la montée en température de la zone auxiliaire. Vérifiez les conditions ambiantes. Si la lenteur persiste fréquemment, prévoyez une maintenance.		
30	INFO	Aux zone temperature is restored, chan = %d	Aucune action (zone auxiliaire à température).		
31	RECOVERABLE	Inlet %d temperature fault	Vérifiez le chauffage de l'entrée (inlet) du canal %d. Laissez refroidir puis redémarrez ce canal. Si l'erreur persiste, faites vérifier ou remplacer le module d'entrée.		
32	RECOVERABLE	Inlet %d sensor fault	Vérifiez la connexion du capteur de l'inlet du canal %d. Si l'erreur continue, contactez un technicien pour remplacer le capteur ou le module.		
33	CRITICAL	Inlet %d is open	Arrêtez l'instrument. Le chauffage de l'inlet du canal %d est ouvert (défectueux). Remplacez le composant ou module d'entrée avant de reprendre.		
34	CRITICAL	Inlet %d is short	Arrêtez l'instrument. Court-circuit du chauffage de l'inlet d canal %d. Faites remplacer le module d'entrée avant de reprendre.		
35	RECOVERABLE	Inlet %d heating too slow	Attendez la stabilisation de la température de l'inlet du cana %d. Si la chauffe reste trop lente fréquemment, envisagez une maintenance du canal.		
36	INFO	Inlet %d temperature is restored	Aucune action (température de l'inlet normalisée).		
37	RECOVERABLE	Spare heater 1 temperature fault	Vérifiez le fonctionnement du chauffage auxiliaire 1. Redémarrez l'appareil. Si l'erreur persiste, faites vérifier ou remplacer ce module.		
38	RECOVERABLE	Spare heater 1 sensor fault	Vérifiez la connexion du capteur du chauffage auxiliaire 1. Si nécessaire, faites remplacer ce capteur ou module.		
39	CRITICAL	Spare heater 1 is open	Cessez d'utiliser le chauffage auxiliaire 1. Son circuit est ouvert (défectueux). Remplacez le module avant de reprendre.		
40	CRITICAL	Spare heater 1 is short	Cessez d'utiliser le chauffage auxiliaire 1. Il est en court- circuit. Contactez le support pour remplacement ou réparation.		
41	RECOVERABLE	Spare heater 1 heating too slow	Laissez le chauffage auxiliaire 1 atteindre sa consigne. Si c'est régulièrement lent, planifiez une vérification de ce module.		
42	INFO	Spare heater 1 temperature is restored	Aucune action (température du chauffage 1 rétablie).		
43	RECOVERABLE	Spare heater 2 temperature fault	Vérifiez le fonctionnement du chauffage auxiliaire 2. Redémarrez l'appareil. Si le problème continue, envisagez le remplacement de ce module.		
44	RECOVERABLE	Spare heater 2 sensor fault	Vérifiez la connexion du capteur du chauffage auxiliaire 2. Si l'erreur se répète, faites remplacer ce capteur ou module.		
45	CRITICAL	Spare heater 2 is open	Arrêtez l'appareil. Le chauffage auxiliaire 2 est déconnecté (circuit ouvert). Remplacez le composant défectueux avant de redémarrer.		

Code d'erreur	Classe	Message d'erreur	Action recommandée		
46	CRITICAL	Spare heater 2 is short	Arrêtez l'appareil. Le chauffage auxiliaire 2 est en court- circuit. Faites réparer ou remplacer ce module avant reprise.		
47	RECOVERABLE	Spare heater 2 heating too slow	Attendez la stabilisation du chauffage auxiliaire 2. Si la lenteur persiste souvent, planifiez une maintenance de ce composant.		
48	INFO	Spare heater 2 temperature is restored	Aucune action (température du chauffage 2 rétablie).		
49	INFO	Self-testing cycle start	Aucune action (cycle d'auto-test en cours).		
50	INFO	Self-testing cycle end	Aucune action (cycle d'auto-test terminé).		
51	RECOVERABLE	License lost due to key detached	Vérifiez la clé de licence. Reconnectez-la si elle s'est détachée, puis redémarrez l'instrument pour rétablir la licence.		
52	INFO	License restored	Aucune action (licence restaurée).		
53	INFO	Wait for preconditions of flush cycle	Aucune action (attente des conditions de purge).		
54	INFO	Start one flush cycle	Aucune action (début d'un cycle de purge).		
55	INFO	One cycle of flush passed	Aucune action (un cycle de purge terminé).		
56	WARNING	Flush cycles aborted	Vérifiez les conditions de purge (gaz vecteur, pression). Relancez la procédure si nécessaire.		
57	INFO	Start Column clean	Aucune action (démarrage du nettoyage de colonne).		
58	INFO	Column clean passed	Aucune action (nettoyage de colonne réussi).		
59	WARNING	Column clean aborted	Vérifiez si le nettoyage de colonne a été interrompu (température/pression). Relancez l'opération si nécessaire		
60	INFO	Temperature equilibrating after column heating	Aucune action (équilibration thermique en cours).		
61	INFO	Temperature equilibrating passed	Aucune action (température stabilisée).		
62	INFO	TCD Calib, chan = %d	Aucune action (calibration TCD en cours sur le canal).		
63	INFO	TCD Calib Success, chan = %d	Aucune action (calibration TCD réussie sur le canal).		
64	RECOVERABLE	TCD Calib Failed, chan = %d	Relancez la calibration du détecteur TCD pour le canal concerné. Si l'échec persiste, vérifiez le détecteur ou contactez un technicien.		
65	WARNING	reserved	Aucune action (code réservé).		
66	INFO	Detector Enabled, chan = %d	Aucune action (détecteur activé sur le canal).		
67	INFO	Detector Disabled, chan = %d	Aucune action (détecteur désactivé sur le canal).		
68	WARNING	TCD temperature limit activated, chan = %d	Le détecteur TCD a atteint sa limite de température (canal %d). Laissez-le refroidir et assurez-vous que les conditions d'analyse sont normales.		
69	WARNING	TCD temperature limit deactivated, chan = %d	Aucune action (limite de température TCD désactivée sur le canal).		
70	WARNING	Channel unit changed, chan = %d	Aucune action (unité de canal modifiée).		

Code d'erreur	Classe	Message d'erreur	Action recommandée	
71	CRITICAL	Adc Mux Offset is out of range, chan = %d	Redémarrez l'instrument. Si l'erreur persiste sur le canal %d, contactez le support (défaut interne ADC).	
72	INFO	reserved	Aucune action (code réservé).	
73	WARNING	Stream select failed	Vérifiez le sélecteur de flux (VICI) et ses connexions. Relancez la sélection. Si l'erreur persiste, faites vérifier la vanne.	
74	INFO	Stream select ok	Aucune action (sélection de flux réussie).	
75	RECOVERABLE	Ambient temperature too high	Température ambiante trop élevée. Améliorez le refroidissement ou déplacez l'appareil dans un endroit plus frais, puis laissez-le refroidir avant de reprendre.	
76	INFO	Ambient temperature error cleared	Aucune action (température ambiante redevenue normale).	
77	RECOVERABLE	Ambient pressure too high	Pression ambiante trop élevée. Utilisez l'appareil dans un environnement à pression normale. Reprenez une fois la pression revenue dans la plage acceptable.	
78	INFO	Ambient pressure error cleared	Aucune action (pression ambiante revenue à la normale).	
79	WARNING	Battery 1 lower power	Batterie 1 faible. Prévoir de la recharger ou de la remplacer prochainement.	
80	INFO	Battery 1 power restored	Aucune action (batterie 1 rechargée/puissance rétablie).	
81	WARNING	Battery 2 lower power	Batterie 2 faible. Prévoir de la recharger ou de la remplacer.	
82	INFO	Battery 2 power restored	Aucune action (batterie 2 rechargée/puissance rétablie).	
83	RECOVERABLE	Low power supply	Alimentation faible. Vérifiez la source d'alimentation (secteur ou batterie). Branchez sur secteur ou remplacez/rechargez la batterie pour une tension stable.	
84	INFO	Main Power Supply restored	Aucune action (alimentation principale rétablie).	
85	CRITICAL	Internal power failure, chan = %d	Panne d'alimentation interne (canal %d). Redémarrez l'appareil. Si l'erreur persiste, faites appel au service technique.	
86	INFO	reserved	Aucune action (code non utilisé).	
87	INFO	Loading Mainboard Eds	Aucune action (chargement des données de la carte principale).	
88	INFO	Loading Channel Controller %d Eds	Aucune action (chargement des données du contrôleur de canal %d).	
89	INFO	Loading Analytical Module %d Eds	Aucune action (chargement des données du module analytique %d).	
90	WARNING	Mainboard EDS logging error	Le journal EDS de la carte principale n'a pas pu être mis à jour. Redémarrez l'appareil. Si l'erreur continue, contactez le support technique.	
91	WARNING	CCB EDS logging error, chan = %d	Le journal EDS du contrôleur de canal %d n'a pas pu être mis à jour. Redémarrez l'appareil. Si le problème persiste, contactez le support.	
92	WARNING	AMI EDS logging error, chan = %d	Le journal EDS du module analytique %d n'a pas pu être mis à jour. Redémarrez. Si l'erreur persiste, contactez le support.	

Code d'erreur	Classe	Message d'erreur	Action recommandée		
93	CRITICAL	Channel Controller EDS validation failed, chan = %d	Données EDS invalides pour le contrôleur de canal %d. Redémarrez l'instrument. Si l'erreur persiste, reconfigurez ou remplacez le module, ou contactez le support.		
94	CRITICAL	Analytical Module EDS validation failed, chan = %d	Données EDS invalides pour le module analytique %d. Redémarrez et re-téléchargez la configuration du module. Si l'erreur persiste, contactez le support pour assistance.		
95	CRITICAL	Mainboard EDS validation failed	Données EDS invalides sur la carte principale. Redémarrez l'instrument. Si l'erreur persiste, faites intervenir le service technique.		
96	WARNING	CCB EDS option section checksum incorrect, chan = %d	Donnée EDS (section options) corrompue sur le contrôleur de canal %d. Redémarrez et reconfigurez si possible. Si l'erreur demeure, contactez le support.		
97	WARNING	CCB EDS logbook section checksum incorrect, chan = %d	Donnée EDS (section journal) corrompue sur le contrôleur de canal %d. Redémarrez. Si l'erreur continue, contactez le support.		
98	WARNING	CCB EDS protected section checksum incorrect, chan = %d	Donnée EDS (section protégée) corrompue sur le contrôleur de canal %d. Redémarrez l'appareil. Si récidive, contactez le service technique.		
99	WARNING	CCB EDS option2 section checksum incorrect, chan = %d	Donnée EDS (section option2) corrompue sur le contrôleur de canal %d. Redémarrez et vérifiez la configuration. Contactez le support si nécessaire.		
100	WARNING	AMI EDS option section checksum incorrect, chan = %d	Donnée EDS (section options) corrompue sur le module analytique %d. Redémarrez et re-téléchargez la configuration. Si le problème persiste, contactez le support.		
101	WARNING	AMI EDS logbook section checksum incorrect, chan = %d	Donnée EDS (section journal) corrompue sur le module analytique %d. Redémarrez. Si l'erreur persiste, contactez d technicien.		
102	WARNING	AMI EDS protected section checksum incorrect, chan = %d	Donnée EDS (section protégée) corrompue sur le module analytique %d. Redémarrez. Si cela persiste, support technique requis.		
103	WARNING	AMI EDS option2 section checksum incorrect, chan = %d	Donnée EDS (section option2) corrompue sur le module analytique %d. Redémarrez et reconfigurez. Si récidive, contactez le support.		
104	WARNING	Mainboard EDS option section checksum incorrect	Donnée EDS (section options) corrompue sur la carte mère. Redémarrez l'instrument. Si l'erreur revient, contactez le support.		
105	WARNING	Mainboard EDS logbook section checksum incorrect	Donnée EDS (section journal) corrompue sur la carte mère. Redémarrez. Si persistance, contactez le support.		
106	WARNING	Mainboard EDS protected section checksum incorrect	Donnée EDS (section protégée) corrompue sur la carte mère. Redémarrez. Si l'erreur persiste, contactez le service technique.		
107	WARNING	CCB EDS option struct version invalid, chan = %d	Version de structure EDS (options) invalide pour le contrôleur de canal %d. Mettez à jour le firmware ou reconfigurez le canal. Sinon, contactez le support.		
108	WARNING	CCB EDS protected struct version invalid, chan = %d	Version de structure EDS (protégée) invalide sur le contrôleur de canal %d. Assurez-vous que le logiciel est à jour. Contactez un technicien si nécessaire.		

Code d'erreur	Classe	Message d'erreur	Action recommandée		
109	WARNING	CCB EDS option2 struct version invalid, chan = %d	Version de structure EDS (option2) invalide pour le contrôleur de canal %d. Mettez à jour la configuration ou contactez le support.		
110	WARNING	AMI EDS option struct version invalid, chan = %d	Version de structure EDS (options) invalide sur le module analytique %d. Mettez à jour le module ou le logiciel. Sinon, contactez le support.		
111	WARNING	AMI EDS protected struct version invalid, chan = %d	Version de structure EDS (protégée) invalide sur le module analytique %d. Mettez à jour le logiciel ou contactez le support technique.		
112	WARNING	AMI EDS option2 struct version invalid, chan = %d	Version de structure EDS (option2) invalide sur le module analytique %d. Effectuez une mise à jour ou contactez le support.		
113	WARNING	Mainboard EDS option struct version invalid	Version de structure EDS (options) invalide sur la carte mère. Mettez à jour le firmware de l'instrument ou contactez le support.		
114	WARNING	Mainboard EDS protected struct version invalid	Version de structure EDS (protégée) invalide sur la carte mère. Mettez à jour le logiciel interne ou contactez le support.		
115	INFO	Start Run Request!	Aucune action (demande de démarrage d'analyse reçue).		
116	RECOVERABLE	Not ready to start run!	L'instrument n'est pas prêt. Vérifiez que toutes les conditions sont remplies (températures, portes fermées, etc.) puis réessayez.		
117	INFO	Run started!	Aucune action (analyse démarrée).		
118	INFO	Run completed	Aucune action (analyse terminée avec succès).		
119	WARNING	Abort run!	L'analyse a été interrompue. Vérifiez la cause de l'arrêt avant de relancer une nouvelle analyse.		
120	INFO	Anyapp report generated!	Aucune action (rapport généré).		
121	WARNING	Anyapp report failed to store!	Échec de l'enregistrement du rapport. Vérifiez l'espace de stockage ou la connexion, puis réessayez.		
122	INFO	Automation Start	Aucune action (début de l'automatisation).		
123	WARNING	Automation is aborted	L'automatisation a été interrompue. Vérifiez les paramètres ou erreurs puis redémarrez si possible.		
124	INFO	Sequence Started	Aucune action (séquence démarrée).		
125	INFO	Sequence Quit	Aucune action (séquence terminée).		
126	INFO	Calibration block started	Aucune action (début du bloc d'étalonnage).		
127	INFO	Calibration block quit	Aucune action (bloc d'étalonnage terminé).		
128	INFO	Verification block started	Aucune action (début du bloc de vérification).		
129	INFO	Verification block quit	Aucune action (bloc de vérification terminé).		
130	INFO	Recalculate!	Aucune action (recalcul effectué).		
131	INFO	Clear all calibration curves	Aucune action (toutes les courbes d'étalonnage ont été réinitialisées).		

Code d'erreur	Classe	Message d'erreur	Action recommandée		
132	WARNING	FTP storage failure	Échec du stockage via FTP. Vérifiez la connexion réseau et les paramètres du serveur FTP, puis réessayez.		
133	WARNING	USB storage failure	Échec du stockage sur USB. Vérifiez la clé USB (connexion, espace disponible), puis réessayez.		
134	INFO	Channel board %d is detected	Aucune action (carte de canal %d détectée).		
135	INFO	Pump board %d is detected	Aucune action (carte de pompe %d détectée).		
136	INFO	Field case is detected	Aucune action (boîtier terrain détecté).		
137	CRITICAL	IOC communication error	Erreur de communication interne (IOC). Redémarrez le MicroGC. Si l'erreur persiste, contactez le support (possible défaut électronique).		
138	FATAL	IOC fatal error	Erreur fatale du contrôleur IOC. L'appareil redémarre. Si cela se reproduit, contactez le support technique.		
139	CRITICAL	Mainboard CAN bus ID is not correct	Conflit d'adresse sur le bus CAN de la carte mère. Éteignez puis rallumez l'instrument. Si l'erreur continue, contactez un technicien.		
140	FATAL	IOC GPIO init failed	Initialisation des E/S du contrôleur IOC échouée (erreur fatale). Laissez l'instrument redémarrer. Si l'erreur revient service technique requis.		
141	FATAL	IOC CAN bus init failed	Initialisation du bus CAN du contrôleur IOC échouée (erreur fatale). L'appareil va redémarrer. Si l'erreur persiste, contactez le support.		
142	CRITICAL	IOC CAN bus id conflict detected	Conflit d'ID sur le bus CAN du IOC. Redémarrez le système. Si l'erreur demeure, faites vérifier la configuration des modules par un technicien.		
143	FATAL	IOC ISR error	Erreur interne du contrôleur IOC (ISR). L'instrument va redémarrer. Si cela survient souvent, contactez le support pour un diagnostic.		
144	CRITICAL	IOC I2C bus init error	Erreur d'initialisation du bus I2C du IOC. Redémarrez l'appareil. Si l'erreur ne disparaît pas, une intervention technique est requise.		
145	WARNING	TCD Autozero health check failure, chan = %d	Autozero du détecteur TCD échoué sur le canal %d. Effectuez un autozero manuel. Si l'erreur persiste, vérifiez le détecteur ou contactez un technicien.		
146	WARNING	TCD Autozero health check warning, chan = %d	Avertissement : autozero TCD hors limites sur le canal %d. Recalibrez bientôt le zéro du détecteur et surveillez ses performances.		
147	INFO	TCD Autozero warning cleared, chan = %d	Aucune action (avertissement autozero TCD levé sur le canal).		
148	FATAL	IOC communication host	Erreur fatale de communication avec l'hôte. L'instrument redémarre. Vérifiez la liaison PC après redémarrage. Si récurrent, contactez le support.		
149	FATAL	Internal watchdog error	Erreur fatale interne (watchdog). L'instrument va redémarrer automatiquement. Si cela se répète, faites diagnostiquer l'appareil par le service technique.		

Code d'erreur	Classe	Message d'erreur	Action recommandée		
150	FATAL	OOA Timer not available	Erreur fatale : minuterie OOA indisponible. Laissez l'appareil redémarrer. Si l'erreur réapparaît, contactez l'assistance technique.		
151	FATAL	OOA event loop stuck	Erreur fatale : boucle d'événement OOA bloquée. Laissez l'appareil redémarrer. Si récurrent, faites appel au support.		
152	CRITICAL	Internal fatal software error	Erreur logicielle interne critique. Redémarrez le système. Si le problème persiste, contactez le support technique.		
153	CRITICAL	Field case initialization failure	Échec de l'initialisation du boîtier terrain. Vérifiez sa connexion. Redémarrez l'appareil. Si l'erreur persiste, faites vérifier le boîtier par un technicien.		
154	INFO	reserved	Aucune action (code réservé).		
155	CRITICAL	Field case gas cylinder %d low pressure	Bouteille de gaz %d (boîtier terrain) presque vide. Remplacez ou rechargez cette bouteille avant de poursuivre.		
156	INFO	Field case gas cylinder %d pressure restored	Aucune action (pression de la bouteille %d rétablie).		
157	INFO	Field case valve %d switches to use gas cylinder	Aucune action (vanne %d commutée sur la bouteille interne).		
158	INFO	Field case valve %d switches to use external gas	Aucune action (vanne %d commutée sur la source de gaz externe).		
159	WARNING	Field case battery %d over temperature	Batterie %d du boîtier terrain en surchauffe. Éteignez l'appareil et laissez refroidir. Vérifiez la ventilation, puis redémarrez une fois refroidi.		
160	WARNING	Field case battery %d over current	Surtension sur la batterie %d du boîtier terrain. Éteigne l'appareil. Vérifiez la batterie et ses connexions. Rempla la batterie si nécessaire.		
161	WARNING	Field case battery %d over voltage	Surcharge de tension sur la batterie %d du boîtier terrain. Mettez l'appareil hors tension. Vérifiez le circuit de charge. Reprenez avec une batterie en bon état.		
162	WARNING	Field case battery %d cell short	Cellule en court-circuit dans la batterie %d du boîtier terrain. Remplacez cette batterie sans tarder (risque de sécurité).		
163	WARNING	Field case battery %d cell open	Cellule défectueuse (circuit ouvert) dans la batterie %d du boîtier terrain. Remplacez la batterie, sa capacité est réduite.		
164	WARNING	Field case battery %d NTC open	Capteur de température (NTC) déconnecté pour la batterie %d du boîtier terrain. Vérifiez le connecteur du capteur. Remplacez la batterie si nécessaire.		
165	WARNING	Field case battery %d gauge failed	Échec du circuit de jauge de la batterie %d (boîtier terrain). Remplacez ou recalibrez cette batterie.		
166	WARNING	Field case battery fan open	Ventilateur de batterie (boîtier terrain) débranché ou en panne. Vérifiez la connexion du ventilateur et remplacez-le si nécessaire.		
167	WARNING	Field case mainboard fan open	Ventilateur de carte principale (boîtier terrain) défectueux ou débranché. Vérifiez-le et remplacez-le si nécessaire.		
168	WARNING	Field case switch valve %d open	Valve de commutation %d du boîtier terrain non fonctionnelle (circuit ouvert). Vérifiez son câblage et remplacez-la si besoin.		

Code d'erreur	Classe	Message d'erreur	Action recommandée		
169	WARNING	Field case pump %d not detected	La pompe %d du boîtier terrain n'est pas détectée. Vérifiez sa connexion. Remplacez ou réparez la pompe si nécessaire.		
170	WARNING	Pump %d open	Pompe %d (interne) non connectée ou en panne (circuit ouvert). Vérifiez les connexions et remplacez la pompe si besoin.		
171	WARNING	Pump valve %d open	Valve de pompe %d défectueuse (ouverte en permanence). Inspectez la valve et remplacez-la si nécessaire.		
172	WARNING	Pump board fan %d open	Ventilateur de la carte de pompe %d hors service ou débranché. Vérifiez et remplacez ce ventilateur si nécessaire.		
173	CRITICAL	Channel %d is lost	Perte de communication avec le canal %d. Vérifiez la connexion du module. Redémarrez l'instrument. Si le canal reste inactif, contactez le support.		
174	CRITICAL	Pump board %d is lost	Perte de communication avec la carte de pompe %d. Vérifiez sa connexion. Redémarrez. Si l'erreur persiste, faites intervenir un technicien.		
175	CRITICAL	Field case is lost	Communication perdue avec le boîtier terrain. Vérifiez la liaison (câbles/connecteurs). Redémarrez. Si le problème continue, maintenance requise.		
176	INFO	Start leak detection process	Aucune action (début du processus de détection de fuites).		
177	WARNING	Channel %d is found leak	Fuite détectée sur le canal %d. Vérifiez et resserrez les raccords de ce canal pour éliminer la fuite.		
178	INFO	Leak detection process finished	Aucune action (test de fuite terminé).		
179	INFO	Leak detection process to be aborted	Aucune action (processus de détection de fuites interrompu).		
180	INFO	Extension board %d detected	Aucune action (carte d'extension %d détectée).		
181	CRITICAL	H2 Pressure too low, chan = %d	Pression H2 trop basse sur le canal %d. Vérifiez la source d'hydrogène (bouteille, vanne). Rétablissez la pression et reprenez l'analyse.		
182	CRITICAL	H2 Pressure too high, chan = %d	Pression H2 trop élevée sur le canal %d. Coupez l'alimentation en H2. Vérifiez le régulateur ou les conduites. Reprendre après retour à la pression normale.		
183	CRITICAL	H2 Pressure cannot reach its setpoint, chan = %d	La pression H2 du canal %d n'atteint pas la consigne. Vérifiez la disponibilité du H2 (bouteille, fuites). Corrigez l'alimentation puis réessayez.		

11. Données techniques

11.1 Alimentation électrique

100-240 VAC, 50-60 Hz 300 W max

11.2 Dimensions et poids

11.2.1 Dimensions

Version coffret de table (équipé de pieds, sans équerre de fixation 19") : Largeur : 448,9 mm Hauteur : 236,7 mm Profondeur : 495,5 mm

Version rack 19" (sans pied, avec équerre de fixation 19") : Largeur : 482 mm Hauteur : 221,5 mm Profondeur : 495,5 mm

11.2.2 Poids

1 module analytique + OBC : 18 kg 2 modules analytiques + OBC : 20 kg 3 modules analytiques + OBC : 22 kg 4 modules analytiques + OBC : 24 kg

11.3 Environnement de travail

- Humidité relative : 0 à 95 % / Stockage : Humidité relative 10 à 95 % ; Température -40 °C à +70 °C
- Sans condensation
- Température ambiante :
 - \circ $\;$ La température de fonctionnement du Micro GC est de 0-50 °C.
 - Le MicroGC s'arrête automatiquement si la température ambiante est supérieure à 70 °C.
- Pression ambiante : Le MicroGC s'arrête automatiquement si la pression est supérieure à 120 kPa.
- Altitude de fonctionnement maximale : certifié jusqu'à 2000 m au-dessus du niveau de la mer.
- Utilisation en intérieur

11.4 Modules chromatographiques

- Jusqu'à 4 modules
- 1 ou 2 gaz vecteurs

11.4.1 Gaz vecteurs

- Compatible avec hélium, hydrogène, azote et argon avec raccords 1/8" Swagelok.
- Pression d'entrée : minimum = 550 ± 20 Kpa (80 ± 3 psi) 5,5 bars
- Pureté minimum : 99,9995 % (pour l'analyse de traces 99,9999 % est recommandé)

11.4.2 Echantillon et injection

- Gaz ou vapeurs uniquement
- Pression de l'échantillon : de l'atmosphérique à 14,5 psi max (1 bar)

11.4.3 Injecteur

- Injecteur micro-usiné sans pièces mobiles
- Volume d'injection de 1 à 10 µL
- Injecteur chauffé jusqu'à 110 °C, incluant une ligne de transfert d'échantillon chauffée
- Possibilité de backflush

11.4.4 Colonne

Gamme de température, jusqu'à 180 °C, isotherme

11.4.5 Détecteur

- Détecteur de conductivité thermique (TCD) micro-usiné
- Double voie (flux d'échantillon et flux de référence)
- Volume interne par voie de 200 nL
- Filaments, four

11.4.6 Gamme de fonctionnement du TCD

- Concentration, de 1 ppm à 100 %
- Gamme linéaire dynamique, 10⁶

11.4.7 Limites de détection du TCD

Les limites de détection sont typiques pour des composants sélectionnés, à partir du moment où la longueur de la colonne et les conditions utilisées sont appropriées.

- 0,5 ppm pour des colonnes capillaires WCOT de longueur comprise entre 4 et 10 m.
- 2 ppm pour des colonnes PLOT

11.4.8 Répétabilité

< 0,5 % RSD pour le propane à un niveau de 1 % molaire pour les colonnes WCOT à température et pression constantes.

11.5 Ordinateur embarqué (OBC)

- Processeur Intel core i3
- SSD 256 GB
- RAM 8 GB
- Windows 10
- **Ports** (connectés à l'ordinateur embarqué)
 - o 1 x Ethernet
 - o 1 x USB 3.2 en face avant
 - o 2 x USB 2.0 en face arrière
 - 2 SUB-D9 mâle RS232-RS422-RS485 *
 - o 1 SUB-D9 mâle RS232 *
 - 0 **1 VGA**
 - * Vanne VICI ou Modbus via Soprane CDS

11.6 Modbus (optionnel)

Communication série RS232 ou RS485 •

- o RTU
- o ASCII 16 bits
- ASCII 32 bits (Daniel)
- Option JBUS
- N° esclave configurable

Communication LAN

- Port 502 configurable
- N° esclave configurable
- o RTU
- ASCII 16 bits
- ASCII 32 bits (Daniel)

11.7 Entrées / Sorties

• Entrée/Sortie numérique

- Connecteur SUB-D25 femelle
- o 2 x entrées numériques
- 2 x sorties numériques
- 2 x sorties relais (24 V 1 A maximum)
- Tensions disponibles : 1 x 5 V 1 x 12 V (500 mA max)
- Signaux de contrôle : 1 x start in 1 ready in 1 ready out 1 start out 0

En option

- Entrée analogique •
 - o Connecteurs à vis avec 4 entrées analogiques 0-10 V ou 0-20 mA (configurables individuellement)
- Entrée/sortie numérique ou analogique (choix entre les possibilités suivantes) ٠
 - o 4 x sorties 4-20 mA
 - 4 x sorties relais (5 A 250 V)
 - o Configuration personnalisée sur demande

11.8 Logiciel de pilotage

Soprane CDS par défaut

12. Déclaration UE de conformité

Nous,

SRA Instruments 210 Rue des Sources 69280 MARCY L'ETOILE FRANCE

En tant que fabricant, nous déclarons sous notre seule responsabilité que le type d'appareil

auquel cette déclaration se rapporte, répond aux Exigences Essentielles de Santé et de Sécurité qui lui sont applicables et qui sont définies par les Directives suivantes ainsi que les ajouts et/ou modifications ultérieurs :

1/ Directive 2014/35/UE, Annexe I 2/ Directive 2014/30/UE, Annexe I

Le respect des exigences ci-dessus a été assuré en appliquant les normes suivantes :

1/ Directive 2014/35/UE - Basse tension

- NF EN 61010-1:2010+A1:2019 "Règles de sécurité pour appareils électriques de mesurage, de régulation et de laboratoire – Partie 1 : Exigences générales"
- NF EN IEC 61010-2-081:2020 "Exigences de sécurité pour appareils électriques de mesurage, de régulation et de laboratoire – Partie 2-081 : Exigences particulières pour les appareils de laboratoire, automatiques et semiautomatiques, destinés à l'analyse et autres usages"

2/ Directive 2014/30/UE – Compatibilité électromagnétique

- NF EN IEC 61326-1:2021 "Matériel électrique de mesure, de commande et de laboratoire Exigences relatives à la CEM – Partie 1 : Exigences générales"
- NF EN 61000-4-2:2009 "Compatibilité électromagnétique (CEM) Partie 4-2 : techniques d'essai et de mesure – Essai d'immunité aux décharges électrostatiques"
- NF EN IEC 61000-4-3:2020 "Compatibilité électromagnétique (CEM) Partie 4-3 : techniques d'essai et de mesure Essai d'immunité aux champs électromagnétiques rayonnés aux fréquences radioélectriques"

Conformément aux directives susmentionnées (Module A), l'équipement mentionné ci-dessus est soumis, en ce qui concerne les aspects de conception et de production, au *contrôle interne de la fabrication* : **E FAB 28**

Marcy l'Etoile, le 20 Janvier 2023

Représentant légal, Armando MILIAZZA

13. Question fréquemment posées (FAQ)

13.1 Mon détecteur indique un défaut au niveau du statut, que dois-je faire ?

Si le détecteur affiche un défaut dans le statut de Soprane :

- 1. Vérifiez que vous avez correctement purgé les colonnes en téléchargeant une méthode de purge avant de démarrer le détecteur, que la tubulure de gaz vecteur est serrée et de qualité, et reliée à un tube en acier inoxydable à une pression de 5,6 bars.
- 2. Vérifiez qu'un flux de gaz vecteur est présent à la sortie des colonnes (à l'arrière du MicroGC). Si ce n'est pas le cas sur l'une des deux sorties, contactez le service après-vente SRA Instruments.
- 3. Vérifiez que le gaz vecteur utilisé est correctement configuré dans le logiciel Soprane Setup.

Si toutes ces vérifications sont effectuées et correctes, veuillez télécharger à nouveau la méthode de purge et regarder le statut.

Si le détecteur est de nouveau en défaut, contactez le service après-vente SRA Instruments.

13.2 Mon capteur de pression indique un défaut au niveau du statut, que dois-je faire ?

- 1. Vérifiez que la tubulure du gaz vecteur est correctement alimentée, serrée et avec une pression de 5,6 bars.
- 2. S'il y a deux entrées de gaz vecteur sur le MicroGC, vérifiez que les deux entrées sont correctement connectées.
- 3. Si nécessaire, vérifiez que le gaz vecteur arrive effectivement à la sortie du tube de gaz vecteur, à l'entrée MicroGC.
- 4. Vérifiez que les sorties des colonnes sont à la pression atmosphérique et qu'elles ne sont pas obstruées.

Si toutes ces vérifications sont effectuées et correctes, téléchargez à nouveau la méthode et regardez le statut.

Si le capteur de pression est de nouveau en défaut, contactez le service après-vente SRA Instruments.

13.3 Je change de gaz vecteur, que dois-je faire ?

Avant de changer le type de gaz vecteur, suivez la procédure pour éteindre votre MicroGC.

Ensuite, configurez le type de gaz vecteur tel qu'il est décrit dans le paragraphe 5.6.

Il est ensuite fortement recommandé de réaliser une régénération pendant une nuit minimum pour purger toutes les colonnes et rééquilibrer la colonne avec l'utilisation d'un nouveau gaz.

N'oubliez pas qu'une mauvaise configuration de gaz vecteur peut endommager irrémédiablement le détecteur.

14. Annexe 1 : Utilisation de l'application face avant

L'application de la face avant du Rack 990 est une représentation simplifiée des conditions du MicroGC et permet également le démarrage d'analyses/séquences ; l'affichage des chromatogrammes n'est pas prévu.

14.1 Affichage du statut de l'instrument

Par défaut l'application affiche le statut actuel de l'instrument par modules. Pour accéder au statut de l'instrument, il faut sélectionner l'onglet « Status ».

Chaque élément des modules peut être de différentes couleurs pour indiquer l'état du statut :

L'élément est prêt et a atteint sa consigne.

L'élément n'est pas prêt, il n'a pas atteint sa consigne : la valeur actuelle est trop haute.

L'élément n'est pas prêt, il n'a pas atteint sa consigne : la valeur actuelle est trop basse.

L'élément est désactivé.

Au bas de la fenêtre, la méthode, la voie d'échantillonnage et l'état de l'instrument sont affichés dans un bandeau dont la couleur varie selon l'état du MicroGC :

Couleur du bandeau	Etat du MicroGC
Bleu	Echantillonnage / PreRun / Exécution analyse / Attente points de données finaux / PostRun
Orange	Rinçage / Stabilisation / Récupération d'erreur / Erreur / Cassé / Attente état prêt
Gris	Non connecté
Vert	Tous les autres états

14.2 Démarrage d'analyses/séquences

Ce chapitre implique d'avoir les droits nécessaires (définis par l'administrateur dans le logiciel Soprane CDS).

14.2.1 Analyses

Il est possible de démarrer une analyse directement via l'application en sélectionnant l'onglet « Analysis » dans le menu vertical et « Analysis » dans le menu horizontal.

Les champs à renseigner sont :

- Le nom de la série d'analyse -
- -La méthode
- Le nombre d'analyses à effectuer

● Status			∃ i Sequence		
Analysis					
F Results	Name of the Analysis Number of	series analyze 5	<u>∓⊢</u> <u>metrology</u>	©	
★ O		Sta	rt		
Settings	壬 Method 1	¶ 1 S	tream 1	⊙ R	eady <u>w</u>

14.2.2 Séquences

Il est également possible de démarrer une séquence directement via l'application en sélectionnant l'onglet « Analysis » dans le menu vertical et « Sequence » dans le menu horizontal.

Les champs à renseigner sont :

- Le nom de la séquence d'analyse -
- Le nombre de répétition de la séquence -

⊙ Status		1	> Analysis	≡¦ Sequence			
Analysis							
Results		Sequence metrology	`©	Number of sequer	1 + -		
*O Administrator			Sta	art			
Settings	式 Me	thod 1	\ 1 S	tream 1	\odot	Ready	((<u>•</u>))

14.3 Affichage des résultats

Pour accéder aux résultats de l'analyse, il faut sélectionner l'onglet « Résultats » dans le menu vertical.

Les résultats peuvent être de différents types :

- Résultats des composés _
- _ Résultats des normes de calculs :
 - Gaz naturel (ISO 6976 :2016)
 - Combustion
 - GLP (ISO 8973)
- Entrées analogiques de l'analyse -
- Calculs personnalisés sur Excel _
- 👔 À noter : dans les affichages suivants, il est possible de configurer les valeurs à afficher en cliquant sur le bouton 🛄 .

14.3.1 Affichage des composés

L'affichage des résultats des composés est disponible en sélectionnant l'onglet « Peaks ».

Le tableau affichera les valeurs suivantes :

- Les nom et module du composé
- -Le temps de rétention
- La concentration
- L'unité de la concentration -
- La concentration normalisée
- La surface
- L'alarme (une icône rouge s'affiche en cas de défaut ; la ligne reste vide s'il n'y a pas de défaut)

Manuel d'utilisation MicroGC R990 avec OBC – Version 1.4

⊙ Status	🛿 Peaks		Standard calculation		✓ Analog inputs		昭田 Excel	
							<u>i</u>	\$
Analysis	Name	Tr (s)	Concentration	Unit	[C%]	Area	Alarm	
5	02 (A)	44.940	21.000	%	21.400	488257257.000)	
Results	N2 (A)	60.910	75.900	ppm	77.400	57454.000		
	CO (A)	124.960	0.060	%	0.061	132.600		
	H2 (B)	124.960	0.060	%	0.061	132.600		
	THT (B)	124.960	0.060	%	0.061	132.600	*	
	CO2 (B)	124.960	0.060	%	0.061	1325252.600		
	Benzene (C)	124.960	0.060	%	0.061	132.600		
	Pentene (C)	124.960	0.060	%	0.061	132.600		
Administrator	Hexane (C)	124.960	0.060	%	0.061	132.600		
- tarihinistrator	CH4 (C)	124.960	0.060	%	0.061	132.600		
Settings	C6+ (D)	124.960	0.060	%	0.061	132.600	(

14.3.2 Calculs spécifiques

L'affichage des résultats des calculs spécifiques est disponible en sélectionnant l'onglet « Standard calculation ».

Un sous-menu permet de sélectionner la norme de calcul souhaitée.

Gaz naturel (ISO 6976 :2016) -

O Status	Peaks	5tandard calculation	Analog inputs		s tÆ⊞E	xcel
Analysis		Natural gas 🛛	Co	ombustion	LPG 🛛	
_				25 °C / 15 °C	0 °C / 25 °C	~
Results	Real	density		0.991 Mj/kg	0.104 Mj/kg	~
	Fact	. of compression		0.501 Mj/kg	0.905 Mj/kg	
	Infe	rior Wobbe index (per	fect)	0.318 Mj/kg	0.834 Mj/kg	
!	ICV	vol Real		0.684 Mj/kg	0.132 Mj/kg	
	scv	vol Real		0.112 Mj/kg	0.883 Mj/kg	
Administrator						

Manuel d'utilisation MicroGC R990 avec OBC – Version 1.4

- Combustion

GPL _

) Status	Peaks	∓≚ Standard calculation	✓ Analog inputs	曜日 Excel	
Analysis		Natural gas 🛛	Combustion	LPG O	
Results	Liquid mass vol. : Total Carbon : 0.6	0.794	Liquid density : 0. ICV : 0.889 MJ/kd	.889	\$
	SCV: 0.038 MJ/k	g	Vapor pressure 3 Abs :0.843	7.8°C Real :0.530	
	Vapor pressure 40 Abs :0.081	<u>0°C</u> Real :0.231	• Vapor pressure 5 Abs :0.454	<u>0°C</u> Real :0.453	
+ Administrator	• Vapor pressure 70 Abs :0.718	<u>0°C</u> Real :0.004	Sum C3 : 0.897 C5 : 0.798	C4 : 0.689 Olefines : 0.308	
Settings	Octane index : 0.8	382	Temperature eval	poration 95% : 0.681	

14.3.3 Entrées analogiques

L'affichage des entrées analogiques est disponible en sélectionnant l'onglet « Analog inputs ».

⊙ Status	5	Pea	ks	<mark>∓</mark> ≛ si	tandard calculation	$ \sim$	Analog i	nputs	tæ∰ Excel
0								i	
Analysis			Cabinet Te	mp.				Cabinet Press.	
Results			57.500 C					32.000 F 31	
			Analog #3 0.589 %						
ہے۔ Login									
\$									
Settings									

14.3.4 Calculs personnalisés sur Excel

L'affichage des calculs personnalisés sur Excel concernant l'analyse est disponible en sélectionnant l'onglet « Excel ».

14.4 Paramétrage de l'application

Plusieurs paramètres peuvent être configurer en cliquant sur « Settings » dans le menu vertical.

Voici les éléments paramétrables :

- La langue (Français/Anglais) -
- Le nom de l'analyseur sur lequel se connecter (par défaut * se connectera au 1^{er} instrument détecté) -
- Affichage du nom de la méthode
- Affichage de la voie d'échantillonnage
- -Affichage dynamique du statut (en cours d'analyses : affiche les résultats de l'analyse précédente ; hors analyses : affiche le statut de l'instrument)
- Changement du thème -

✿ <u>Settings</u>					
Language	English				
Analyzer name	*				
III Display					
✓ Method name	✓ Stream				
✓ Dynamic status view					
% Theme					
Ø 🔵	ی د				
Close					

