ON-LINE MEASUREMENT OF BIOMETHANE, SYNTHETIC METHANE AND NATURAL GAS ENERGY, QUALITY AND TRUMENTS **ODORIZATION BY ONE DEDICATED MICROGC**

Ronan COZIC¹ Pauline GUERIN¹ Christopher SAUER¹ Gianluca STANI² ¹ Sra Instruments S.A.S. | 210 rue des Sources, 69280 Marcy l'Etoile, France ² Sra Instruments S.p.A. | via alla Castellana 3, 20063 Cernusco S/N (MI) Italy e-mail addresses | r.cozic@sra-instruments.com

INTRODUCTION

Biomethane is an important source of green and renewable energy. To allow injection of biomethane into the natural gas grid or the use as a vehicle fuel, it should meet the quality standards for natural gas

The timely and accurate measurement of the biomethane energy is of fundamental importance for users and distributors. The MicroGC technology supply features ideal for fast and accurate on-line analysis of biomethane and calorific value measurements. Minor organic contaminants like hydrogen sulfide, carbonyl sulfide, terpenes, ketones can be determined, as well biomethane odorization. As connection tool, an important role is played by the software architecture of the MicroGC system, it must be flexible and open to any specific installation requirement, like sampling switching, data communication and, at the same time, fully user accessible for data analysis management. The R990 M MicroGC from SRA Instruments Company is just starting its metrology certification process by the LNE (National Laboratory of Tests) according to the international recommendation OIML R140:2007 (OIML = International Organization of Legal Metrology), this will ensure the reliability and the reproducibility of the results, but also the reliability and the safety of the conditions of use. The metrology certification will concern the energy measurement of biomethane as well as natural gas with hydrogen.

INSTRUMENTATION

The analyzer uses the 990 channels from Agilent. This instrument can use from 1 to 4 MicroGC channel simultaneously.

- The 990 technology makes some differences compared to previous 490 platform by :
- Improved channel design for easier exchange (less than 10 minutes)
- Better robustness. The use of fewer advanced connections limits diffusion and thus to extend the instrument's operating time

SOFTWARE

Inside the R990 is an on-board computer system driven by Windows 10 IOT

Other specifications include : • Front panel touchscreen

• Modbus : serial and/or TCP-IP

• I/O Digital & Analogic

The software used is a dedicated chromatography Data Svstem for MicroGC providing function for automation and process application. Soprane CDS integrates calculations including those of the ISO 6976:2016 standard.

It is able to manage user and alarms. Its diagnostics is facilitated by the emission of log files and can handle many others (Automatic restart, stream selector, remote access...)

BIOMETHANE AND SYNTHETIC METHANE ANALYSIS

The analysis of all compounds contained in biomethane, or synthetic methane, requires a two-channel configuration : a CP-Molsieve 5Å for "light" gases and a PoraPlot U for hydrocarbons up to C, and sulphur compounds

• Good linearity from 0.05 to 20 % Mo

22.34x

0,9976

Only one carrier gas is used : helium

Cycle time : 180 seconds

Channel PoraPlot U

A UTCI

Features :

- Heated sample inlet and injectors
- Integrated sensor for sample pressure alarm and monitoring within Soprane SW)
- One dedicated inlet for the optional non-metrology channel
- Inert membrane filter to ensure that no droplets nor particles enter in the injector
- Temperature range for each channel : up to 180 °C and only isothermal
- Possibility of having 1 or 2 carrier gases depending on the application

METROLOGY CERTIFICATION

According to OIML R140 - Measuring systems for gaseous fuel Calculation : • SCV - volumetric basis

- ICV volumetric basis
- Wobbe index
- Density or relative density
- Gas composition

Sample	Biomethane and Natural Gas including $\rm H_{_2}$
International Standard for Calorific Values Calculation	ISO 6976:2016
Accuracy class	Classe A (0.5%)
ISO standard reference conditions	0°C/0°C ; 25°C/0°C ; 15°C/15°C
Calorific value measurement range	9 to 14 kWh/m ³
Environmental temperature	-10°C to +40°C

NATURAL GAS ANALYSIS

The analysis of natural gas (with or without hydrogen) uses a three-channel configuration : a CP-Molsieve 5Å, a PoraPlot U and a CP-Sil 5CB BE2D

This channel can analyze compounds from C_2 to C_4 . All compounds after C_4 are eluted in a single peak before the matrix peak

Only one carrier gas is used : helium

• 0.07 % Mol

• 2.0 % Mol

• 1 00 H : 0.05 % Mol

H ₂ (6 % Mol)	114.70	0.15	iC ₄ (0.18 % Mol)	42.9	0.01	1362.7	0.57
H ₂ S (2 ppm)	1.96	3.5	nC ₄ (0.18 % Mol)	47.8	0.01	1337.0	0.46
COS (3 ppm)	9.23	2.9	iC ₅ (0.07 % Mol)	63.6	0.01	666.5	0.36
CO2 (0.05 % Mol)	1195.9	0.02	nC ₅ (0.08 % Mol)	71.4	0.01	692.0	0.37
C2 (0.10 % Mol)	2664.2	0.02	neoC ₅ (0.017 % Mol)	50.2	0.01	100.7	0.41
C3 (0.05 % Mol)	1585.3	0.56	C ₆₊ (0.1 % Mol)	23.7	0.02	903.6	0.31

THE OPTIONAL CHANNEL

The modularity of the instrument allows the choice of the module according to the odorant molecules added to gas. Thus, the CP Sil 19CB channel allows the quantification of THT while the CP Sil 13CB channel allows the quantification of TBM.

On the other hand, some injection sites may require the monitoring of other compounds belonging to the terpene family. For this, the CP Sil 13CB channel is the best choice to control their content in the gas.

CONCLUSION

The previous version of metrology-certified instrumentation according to the same recommendations and standards, has already proved its worth. More than 150 analyzers from SRA have been installed for the on-line monitoring of injected biomethane. The new generation R990, with all its extended application range, will meet tomorrow's requirements for the analysis of biomethane, synthetic methane and natural gas including hydrogen compound. The dedicated Soprane CDS software is a powerful asset for the R990 on-line in the industrial and new energy field.

srainstruments.com

Channel CP-Sil 19CB for THT Channel CP-Sil 13CB

